Initial readme up

This commit is contained in:
2025-12-18 17:39:13 +11:00
commit d5f3d3ecbe
10 changed files with 2002 additions and 0 deletions

627
src/VictronBLE.cpp Normal file
View File

@@ -0,0 +1,627 @@
/**
* VictronBLE - ESP32 library for Victron Energy BLE devices
* Implementation file
*/
#include "VictronBLE.h"
// Constructor
VictronBLE::VictronBLE()
: pBLEScan(nullptr), callback(nullptr), debugEnabled(false),
scanDuration(5), initialized(false) {
}
// Destructor
VictronBLE::~VictronBLE() {
for (auto& pair : devices) {
delete pair.second;
}
devices.clear();
if (pBLEScan) {
pBLEScan->stop();
}
}
// Initialize BLE
bool VictronBLE::begin(uint32_t scanDuration) {
if (initialized) {
debugPrint("VictronBLE already initialized");
return true;
}
this->scanDuration = scanDuration;
debugPrint("Initializing VictronBLE...");
BLEDevice::init("VictronBLE");
pBLEScan = BLEDevice::getScan();
if (!pBLEScan) {
lastError = "Failed to create BLE scanner";
return false;
}
pBLEScan->setAdvertisedDeviceCallbacks(new VictronBLEAdvertisedDeviceCallbacks(this), true);
pBLEScan->setActiveScan(false); // Passive scan - lower power
pBLEScan->setInterval(100);
pBLEScan->setWindow(99);
initialized = true;
debugPrint("VictronBLE initialized successfully");
return true;
}
// Add a device to monitor
bool VictronBLE::addDevice(const VictronDeviceConfig& config) {
if (config.macAddress.length() == 0) {
lastError = "MAC address cannot be empty";
return false;
}
if (config.encryptionKey.length() != 32) {
lastError = "Encryption key must be 32 hex characters";
return false;
}
String normalizedMAC = normalizeMAC(config.macAddress);
// Check if device already exists
if (devices.find(normalizedMAC) != devices.end()) {
debugPrint("Device " + normalizedMAC + " already exists, updating config");
delete devices[normalizedMAC];
}
DeviceInfo* info = new DeviceInfo();
info->config = config;
info->config.macAddress = normalizedMAC;
// Convert encryption key from hex string to bytes
if (!hexStringToBytes(config.encryptionKey, info->encryptionKeyBytes, 16)) {
lastError = "Invalid encryption key format";
delete info;
return false;
}
// Create appropriate data structure based on device type
info->data = createDeviceData(config.expectedType);
if (info->data) {
info->data->macAddress = normalizedMAC;
info->data->deviceName = config.name;
}
devices[normalizedMAC] = info;
debugPrint("Added device: " + config.name + " (" + normalizedMAC + ")");
return true;
}
bool VictronBLE::addDevice(String name, String macAddress, String encryptionKey,
VictronDeviceType expectedType) {
VictronDeviceConfig config(name, macAddress, encryptionKey, expectedType);
return addDevice(config);
}
// Remove a device
void VictronBLE::removeDevice(String macAddress) {
String normalizedMAC = normalizeMAC(macAddress);
auto it = devices.find(normalizedMAC);
if (it != devices.end()) {
delete it->second;
devices.erase(it);
debugPrint("Removed device: " + normalizedMAC);
}
}
// Main loop function
void VictronBLE::loop() {
if (!initialized) {
return;
}
// Start a scan
BLEScanResults scanResults = pBLEScan->start(scanDuration, false);
pBLEScan->clearResults();
}
// BLE callback implementation
void VictronBLEAdvertisedDeviceCallbacks::onResult(BLEAdvertisedDevice advertisedDevice) {
if (victronBLE) {
victronBLE->processDevice(advertisedDevice);
}
}
// Process advertised device
void VictronBLE::processDevice(BLEAdvertisedDevice advertisedDevice) {
String mac = macAddressToString(advertisedDevice.getAddress());
String normalizedMAC = normalizeMAC(mac);
// Check if this is one of our configured devices
auto it = devices.find(normalizedMAC);
if (it == devices.end()) {
return; // Not a device we're monitoring
}
DeviceInfo* deviceInfo = it->second;
// Check if device has manufacturer data
if (!advertisedDevice.haveManufacturerData()) {
return;
}
std::string mfgData = advertisedDevice.getManufacturerData();
if (mfgData.length() < 2) {
return;
}
// Check if it's Victron (manufacturer ID 0x02E1)
uint16_t mfgId = (uint8_t)mfgData[1] << 8 | (uint8_t)mfgData[0];
if (mfgId != VICTRON_MANUFACTURER_ID) {
return;
}
debugPrint("Processing data from: " + deviceInfo->config.name);
// Parse the advertisement
if (parseAdvertisement((const uint8_t*)mfgData.data(), mfgData.length(), normalizedMAC)) {
// Update RSSI
if (deviceInfo->data) {
deviceInfo->data->rssi = advertisedDevice.getRSSI();
deviceInfo->data->lastUpdate = millis();
}
}
}
// Parse advertisement data
bool VictronBLE::parseAdvertisement(const uint8_t* manufacturerData, size_t len,
const String& macAddress) {
auto it = devices.find(macAddress);
if (it == devices.end()) {
return false;
}
DeviceInfo* deviceInfo = it->second;
if (len < 6) {
debugPrint("Manufacturer data too short");
return false;
}
// Structure: [MfgID(2)] [DeviceType(1)] [IV(2)] [EncryptedData(n)]
uint8_t deviceType = manufacturerData[2];
// Extract IV (initialization vector) - bytes 3-4, little-endian
uint8_t iv[16] = {0};
iv[0] = manufacturerData[3];
iv[1] = manufacturerData[4];
// Rest of IV is zero-padded
// Encrypted data starts at byte 5
const uint8_t* encryptedData = manufacturerData + 5;
size_t encryptedLen = len - 5;
if (debugEnabled) {
debugPrintHex("Encrypted data", encryptedData, encryptedLen);
debugPrintHex("IV", iv, 16);
}
// Decrypt the data
uint8_t decrypted[32]; // Max expected size
if (!decryptAdvertisement(encryptedData, encryptedLen,
deviceInfo->encryptionKeyBytes, iv, decrypted)) {
lastError = "Decryption failed";
return false;
}
if (debugEnabled) {
debugPrintHex("Decrypted data", decrypted, encryptedLen);
}
// Parse based on device type
bool parseOk = false;
switch (deviceType) {
case DEVICE_TYPE_SOLAR_CHARGER:
if (deviceInfo->data && deviceInfo->data->deviceType == DEVICE_TYPE_SOLAR_CHARGER) {
parseOk = parseSolarCharger(decrypted, encryptedLen,
*(SolarChargerData*)deviceInfo->data);
}
break;
case DEVICE_TYPE_BATTERY_MONITOR:
if (deviceInfo->data && deviceInfo->data->deviceType == DEVICE_TYPE_BATTERY_MONITOR) {
parseOk = parseBatteryMonitor(decrypted, encryptedLen,
*(BatteryMonitorData*)deviceInfo->data);
}
break;
case DEVICE_TYPE_INVERTER:
case DEVICE_TYPE_INVERTER_RS:
case DEVICE_TYPE_MULTI_RS:
case DEVICE_TYPE_VE_BUS:
if (deviceInfo->data && deviceInfo->data->deviceType == DEVICE_TYPE_INVERTER) {
parseOk = parseInverter(decrypted, encryptedLen,
*(InverterData*)deviceInfo->data);
}
break;
case DEVICE_TYPE_DCDC_CONVERTER:
if (deviceInfo->data && deviceInfo->data->deviceType == DEVICE_TYPE_DCDC_CONVERTER) {
parseOk = parseDCDCConverter(decrypted, encryptedLen,
*(DCDCConverterData*)deviceInfo->data);
}
break;
default:
debugPrint("Unknown device type: 0x" + String(deviceType, HEX));
return false;
}
if (parseOk && deviceInfo->data) {
deviceInfo->data->dataValid = true;
// Call appropriate callback
if (callback) {
switch (deviceType) {
case DEVICE_TYPE_SOLAR_CHARGER:
callback->onSolarChargerData(*(SolarChargerData*)deviceInfo->data);
break;
case DEVICE_TYPE_BATTERY_MONITOR:
callback->onBatteryMonitorData(*(BatteryMonitorData*)deviceInfo->data);
break;
case DEVICE_TYPE_INVERTER:
case DEVICE_TYPE_INVERTER_RS:
case DEVICE_TYPE_MULTI_RS:
case DEVICE_TYPE_VE_BUS:
callback->onInverterData(*(InverterData*)deviceInfo->data);
break;
case DEVICE_TYPE_DCDC_CONVERTER:
callback->onDCDCConverterData(*(DCDCConverterData*)deviceInfo->data);
break;
}
}
}
return parseOk;
}
// Decrypt advertisement using AES-128-CTR
bool VictronBLE::decryptAdvertisement(const uint8_t* encrypted, size_t encLen,
const uint8_t* key, const uint8_t* iv,
uint8_t* decrypted) {
mbedtls_aes_context aes;
mbedtls_aes_init(&aes);
// Set encryption key
int ret = mbedtls_aes_setkey_enc(&aes, key, 128);
if (ret != 0) {
mbedtls_aes_free(&aes);
return false;
}
// AES-CTR decryption
size_t nc_off = 0;
uint8_t nonce_counter[16];
uint8_t stream_block[16];
memcpy(nonce_counter, iv, 16);
memset(stream_block, 0, 16);
ret = mbedtls_aes_crypt_ctr(&aes, encLen, &nc_off, nonce_counter,
stream_block, encrypted, decrypted);
mbedtls_aes_free(&aes);
return (ret == 0);
}
// Parse Solar Charger data
bool VictronBLE::parseSolarCharger(const uint8_t* data, size_t len, SolarChargerData& result) {
if (len < 12) {
debugPrint("Solar charger data too short");
return false;
}
// Byte 0: Charge state
result.chargeState = (SolarChargerState)data[0];
// Bytes 1-2: Battery voltage (10 mV units)
uint16_t vBat = data[1] | (data[2] << 8);
result.batteryVoltage = vBat * 0.01f;
// Bytes 3-4: Battery current (10 mA units, signed)
int16_t iBat = (int16_t)(data[3] | (data[4] << 8));
result.batteryCurrent = iBat * 0.01f;
// Bytes 5-6: Yield today (10 Wh units)
uint16_t yield = data[5] | (data[6] << 8);
result.yieldToday = yield * 10;
// Bytes 7-8: PV power (1 W units)
uint16_t pvPower = data[7] | (data[8] << 8);
result.panelPower = pvPower;
// Bytes 9-10: Load current (10 mA units)
uint16_t iLoad = data[9] | (data[10] << 8);
if (iLoad != 0xFFFF) { // 0xFFFF means no load output
result.loadCurrent = iLoad * 0.01f;
}
// Calculate PV voltage from power and current (if current > 0)
if (result.batteryCurrent > 0.1f) {
result.panelVoltage = result.panelPower / result.batteryCurrent;
}
debugPrint("Solar Charger: " + String(result.batteryVoltage, 2) + "V, " +
String(result.batteryCurrent, 2) + "A, " +
String(result.panelPower) + "W, State: " + String(result.chargeState));
return true;
}
// Parse Battery Monitor data
bool VictronBLE::parseBatteryMonitor(const uint8_t* data, size_t len, BatteryMonitorData& result) {
if (len < 15) {
debugPrint("Battery monitor data too short");
return false;
}
// Bytes 0-1: Remaining time (1 minute units)
uint16_t timeRemaining = data[0] | (data[1] << 8);
result.remainingMinutes = timeRemaining;
// Bytes 2-3: Battery voltage (10 mV units)
uint16_t vBat = data[2] | (data[3] << 8);
result.voltage = vBat * 0.01f;
// Byte 4: Alarms
uint8_t alarms = data[4];
result.alarmLowVoltage = (alarms & 0x01) != 0;
result.alarmHighVoltage = (alarms & 0x02) != 0;
result.alarmLowSOC = (alarms & 0x04) != 0;
result.alarmLowTemperature = (alarms & 0x10) != 0;
result.alarmHighTemperature = (alarms & 0x20) != 0;
// Bytes 5-6: Aux voltage/temperature (10 mV or 0.01K units)
uint16_t aux = data[5] | (data[6] << 8);
if (aux < 3000) { // If < 30V, it's voltage
result.auxVoltage = aux * 0.01f;
result.temperature = 0;
} else { // Otherwise temperature in 0.01 Kelvin
result.temperature = (aux * 0.01f) - 273.15f;
result.auxVoltage = 0;
}
// Bytes 7-9: Battery current (22-bit signed, 1 mA units)
int32_t current = data[7] | (data[8] << 8) | ((data[9] & 0x3F) << 16);
if (current & 0x200000) { // Sign extend if negative
current |= 0xFFC00000;
}
result.current = current * 0.001f;
// Bytes 9-11: Consumed Ah (18-bit signed, 10 mAh units)
int32_t consumedAh = ((data[9] & 0xC0) >> 6) | (data[10] << 2) | ((data[11] & 0xFF) << 10);
if (consumedAh & 0x20000) { // Sign extend
consumedAh |= 0xFFFC0000;
}
result.consumedAh = consumedAh * 0.01f;
// Bytes 12-13: SOC (10 = 1.0%)
uint16_t soc = data[12] | ((data[13] & 0x03) << 8);
result.soc = soc * 0.1f;
debugPrint("Battery Monitor: " + String(result.voltage, 2) + "V, " +
String(result.current, 2) + "A, SOC: " + String(result.soc, 1) + "%");
return true;
}
// Parse Inverter data
bool VictronBLE::parseInverter(const uint8_t* data, size_t len, InverterData& result) {
if (len < 10) {
debugPrint("Inverter data too short");
return false;
}
// Byte 0: Device state
result.state = data[0];
// Bytes 1-2: Battery voltage (10 mV units)
uint16_t vBat = data[1] | (data[2] << 8);
result.batteryVoltage = vBat * 0.01f;
// Bytes 3-4: Battery current (10 mA units, signed)
int16_t iBat = (int16_t)(data[3] | (data[4] << 8));
result.batteryCurrent = iBat * 0.01f;
// Bytes 5-7: AC Power (1 W units, signed 24-bit)
int32_t acPower = data[5] | (data[6] << 8) | (data[7] << 16);
if (acPower & 0x800000) { // Sign extend
acPower |= 0xFF000000;
}
result.acPower = acPower;
// Byte 8: Alarms
uint8_t alarms = data[8];
result.alarmLowVoltage = (alarms & 0x01) != 0;
result.alarmHighVoltage = (alarms & 0x02) != 0;
result.alarmHighTemperature = (alarms & 0x04) != 0;
result.alarmOverload = (alarms & 0x08) != 0;
debugPrint("Inverter: " + String(result.batteryVoltage, 2) + "V, " +
String(result.acPower) + "W, State: " + String(result.state));
return true;
}
// Parse DC-DC Converter data
bool VictronBLE::parseDCDCConverter(const uint8_t* data, size_t len, DCDCConverterData& result) {
if (len < 10) {
debugPrint("DC-DC converter data too short");
return false;
}
// Byte 0: Charge state
result.chargeState = data[0];
// Bytes 1-2: Input voltage (10 mV units)
uint16_t vIn = data[1] | (data[2] << 8);
result.inputVoltage = vIn * 0.01f;
// Bytes 3-4: Output voltage (10 mV units)
uint16_t vOut = data[3] | (data[4] << 8);
result.outputVoltage = vOut * 0.01f;
// Bytes 5-6: Output current (10 mA units)
uint16_t iOut = data[5] | (data[6] << 8);
result.outputCurrent = iOut * 0.01f;
// Byte 7: Error code
result.errorCode = data[7];
debugPrint("DC-DC Converter: In=" + String(result.inputVoltage, 2) + "V, Out=" +
String(result.outputVoltage, 2) + "V, " + String(result.outputCurrent, 2) + "A");
return true;
}
// Get data methods
bool VictronBLE::getSolarChargerData(String macAddress, SolarChargerData& data) {
String normalizedMAC = normalizeMAC(macAddress);
auto it = devices.find(normalizedMAC);
if (it != devices.end() && it->second->data &&
it->second->data->deviceType == DEVICE_TYPE_SOLAR_CHARGER) {
data = *(SolarChargerData*)it->second->data;
return data.dataValid;
}
return false;
}
bool VictronBLE::getBatteryMonitorData(String macAddress, BatteryMonitorData& data) {
String normalizedMAC = normalizeMAC(macAddress);
auto it = devices.find(normalizedMAC);
if (it != devices.end() && it->second->data &&
it->second->data->deviceType == DEVICE_TYPE_BATTERY_MONITOR) {
data = *(BatteryMonitorData*)it->second->data;
return data.dataValid;
}
return false;
}
bool VictronBLE::getInverterData(String macAddress, InverterData& data) {
String normalizedMAC = normalizeMAC(macAddress);
auto it = devices.find(normalizedMAC);
if (it != devices.end() && it->second->data &&
it->second->data->deviceType == DEVICE_TYPE_INVERTER) {
data = *(InverterData*)it->second->data;
return data.dataValid;
}
return false;
}
bool VictronBLE::getDCDCConverterData(String macAddress, DCDCConverterData& data) {
String normalizedMAC = normalizeMAC(macAddress);
auto it = devices.find(normalizedMAC);
if (it != devices.end() && it->second->data &&
it->second->data->deviceType == DEVICE_TYPE_DCDC_CONVERTER) {
data = *(DCDCConverterData*)it->second->data;
return data.dataValid;
}
return false;
}
// Get devices by type
std::vector<String> VictronBLE::getDevicesByType(VictronDeviceType type) {
std::vector<String> result;
for (const auto& pair : devices) {
if (pair.second->data && pair.second->data->deviceType == type) {
result.push_back(pair.first);
}
}
return result;
}
// Helper: Create device data structure
VictronDeviceData* VictronBLE::createDeviceData(VictronDeviceType type) {
switch (type) {
case DEVICE_TYPE_SOLAR_CHARGER:
return new SolarChargerData();
case DEVICE_TYPE_BATTERY_MONITOR:
return new BatteryMonitorData();
case DEVICE_TYPE_INVERTER:
case DEVICE_TYPE_INVERTER_RS:
case DEVICE_TYPE_MULTI_RS:
case DEVICE_TYPE_VE_BUS:
return new InverterData();
case DEVICE_TYPE_DCDC_CONVERTER:
return new DCDCConverterData();
default:
return new VictronDeviceData();
}
}
// Helper: Convert hex string to bytes
bool VictronBLE::hexStringToBytes(const String& hex, uint8_t* bytes, size_t len) {
if (hex.length() != len * 2) {
return false;
}
for (size_t i = 0; i < len; i++) {
String byteStr = hex.substring(i * 2, i * 2 + 2);
char* endPtr;
bytes[i] = strtoul(byteStr.c_str(), &endPtr, 16);
if (*endPtr != '\0') {
return false;
}
}
return true;
}
// Helper: MAC address to string
String VictronBLE::macAddressToString(BLEAddress address) {
char macStr[18];
snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x",
address.getNative()[0], address.getNative()[1],
address.getNative()[2], address.getNative()[3],
address.getNative()[4], address.getNative()[5]);
return String(macStr);
}
// Helper: Normalize MAC address format
String VictronBLE::normalizeMAC(String mac) {
String normalized = mac;
normalized.toLowerCase();
normalized.replace("-", ":");
return normalized;
}
// Debug helpers
void VictronBLE::debugPrint(const String& message) {
if (debugEnabled) {
Serial.println("[VictronBLE] " + message);
}
}
void VictronBLE::debugPrintHex(const char* label, const uint8_t* data, size_t len) {
if (!debugEnabled) return;
Serial.print("[VictronBLE] ");
Serial.print(label);
Serial.print(": ");
for (size_t i = 0; i < len; i++) {
if (data[i] < 0x10) Serial.print("0");
Serial.print(data[i], HEX);
Serial.print(" ");
}
Serial.println();
}

264
src/VictronBLE.h Normal file
View File

@@ -0,0 +1,264 @@
/**
* VictronBLE - ESP32 library for Victron Energy BLE devices
*
* Based on Victron's official BLE Advertising protocol documentation
* Inspired by hoberman's examples and keshavdv's Python library
*
* Copyright (c) 2024
* License: MIT
*/
#ifndef VICTRON_BLE_H
#define VICTRON_BLE_H
#include <Arduino.h>
#include <BLEDevice.h>
#include <BLEAdvertisedDevice.h>
#include <BLEScan.h>
#include <map>
#include <vector>
#include "mbedtls/aes.h"
// Victron manufacturer ID
#define VICTRON_MANUFACTURER_ID 0x02E1
// Device type IDs from Victron protocol
enum VictronDeviceType {
DEVICE_TYPE_UNKNOWN = 0x00,
DEVICE_TYPE_SOLAR_CHARGER = 0x01,
DEVICE_TYPE_BATTERY_MONITOR = 0x02,
DEVICE_TYPE_INVERTER = 0x03,
DEVICE_TYPE_DCDC_CONVERTER = 0x04,
DEVICE_TYPE_SMART_LITHIUM = 0x05,
DEVICE_TYPE_INVERTER_RS = 0x06,
DEVICE_TYPE_SMART_BATTERY_PROTECT = 0x07,
DEVICE_TYPE_LYNX_SMART_BMS = 0x08,
DEVICE_TYPE_MULTI_RS = 0x09,
DEVICE_TYPE_VE_BUS = 0x0A,
DEVICE_TYPE_DC_ENERGY_METER = 0x0B
};
// Device state for Solar Charger
enum SolarChargerState {
CHARGER_OFF = 0,
CHARGER_LOW_POWER = 1,
CHARGER_FAULT = 2,
CHARGER_BULK = 3,
CHARGER_ABSORPTION = 4,
CHARGER_FLOAT = 5,
CHARGER_STORAGE = 6,
CHARGER_EQUALIZE = 7,
CHARGER_INVERTING = 9,
CHARGER_POWER_SUPPLY = 11,
CHARGER_EXTERNAL_CONTROL = 252
};
// Base structure for all device data
struct VictronDeviceData {
String deviceName;
String macAddress;
VictronDeviceType deviceType;
int8_t rssi;
uint32_t lastUpdate;
bool dataValid;
VictronDeviceData() : deviceType(DEVICE_TYPE_UNKNOWN), rssi(-100),
lastUpdate(0), dataValid(false) {}
};
// Solar Charger specific data
struct SolarChargerData : public VictronDeviceData {
SolarChargerState chargeState;
float batteryVoltage; // V
float batteryCurrent; // A
float panelVoltage; // V (PV voltage)
float panelPower; // W
uint16_t yieldToday; // Wh
float loadCurrent; // A
SolarChargerData() : chargeState(CHARGER_OFF), batteryVoltage(0),
batteryCurrent(0), panelVoltage(0), panelPower(0),
yieldToday(0), loadCurrent(0) {
deviceType = DEVICE_TYPE_SOLAR_CHARGER;
}
};
// Battery Monitor/SmartShunt specific data
struct BatteryMonitorData : public VictronDeviceData {
float voltage; // V
float current; // A (positive = charging, negative = discharging)
float temperature; // °C
float auxVoltage; // V (starter battery or midpoint)
uint16_t remainingMinutes; // Minutes
float consumedAh; // Ah
float soc; // State of Charge %
bool alarmLowVoltage;
bool alarmHighVoltage;
bool alarmLowSOC;
bool alarmLowTemperature;
bool alarmHighTemperature;
BatteryMonitorData() : voltage(0), current(0), temperature(0),
auxVoltage(0), remainingMinutes(0), consumedAh(0),
soc(0), alarmLowVoltage(false), alarmHighVoltage(false),
alarmLowSOC(false), alarmLowTemperature(false),
alarmHighTemperature(false) {
deviceType = DEVICE_TYPE_BATTERY_MONITOR;
}
};
// Inverter specific data
struct InverterData : public VictronDeviceData {
float batteryVoltage; // V
float batteryCurrent; // A
float acPower; // W
uint8_t state; // Inverter state
bool alarmHighVoltage;
bool alarmLowVoltage;
bool alarmHighTemperature;
bool alarmOverload;
InverterData() : batteryVoltage(0), batteryCurrent(0), acPower(0),
state(0), alarmHighVoltage(false), alarmLowVoltage(false),
alarmHighTemperature(false), alarmOverload(false) {
deviceType = DEVICE_TYPE_INVERTER;
}
};
// DC-DC Converter specific data
struct DCDCConverterData : public VictronDeviceData {
float inputVoltage; // V
float outputVoltage; // V
float outputCurrent; // A
uint8_t chargeState;
uint8_t errorCode;
DCDCConverterData() : inputVoltage(0), outputVoltage(0), outputCurrent(0),
chargeState(0), errorCode(0) {
deviceType = DEVICE_TYPE_DCDC_CONVERTER;
}
};
// Forward declaration
class VictronBLE;
// Callback interface for device data updates
class VictronDeviceCallback {
public:
virtual ~VictronDeviceCallback() {}
virtual void onSolarChargerData(const SolarChargerData& data) {}
virtual void onBatteryMonitorData(const BatteryMonitorData& data) {}
virtual void onInverterData(const InverterData& data) {}
virtual void onDCDCConverterData(const DCDCConverterData& data) {}
};
// Device configuration structure
struct VictronDeviceConfig {
String name;
String macAddress;
String encryptionKey; // 32 character hex string
VictronDeviceType expectedType;
VictronDeviceConfig() : expectedType(DEVICE_TYPE_UNKNOWN) {}
VictronDeviceConfig(String n, String mac, String key, VictronDeviceType type = DEVICE_TYPE_UNKNOWN)
: name(n), macAddress(mac), encryptionKey(key), expectedType(type) {}
};
// Main VictronBLE class
class VictronBLE {
public:
VictronBLE();
~VictronBLE();
// Initialize BLE and start scanning
bool begin(uint32_t scanDuration = 5);
// Add a device to monitor
bool addDevice(const VictronDeviceConfig& config);
bool addDevice(String name, String macAddress, String encryptionKey,
VictronDeviceType expectedType = DEVICE_TYPE_UNKNOWN);
// Remove a device
void removeDevice(String macAddress);
// Get device count
size_t getDeviceCount() const { return devices.size(); }
// Set callback for data updates
void setCallback(VictronDeviceCallback* cb) { callback = cb; }
// Process scanning (call in loop())
void loop();
// Get latest data for a device
bool getSolarChargerData(String macAddress, SolarChargerData& data);
bool getBatteryMonitorData(String macAddress, BatteryMonitorData& data);
bool getInverterData(String macAddress, InverterData& data);
bool getDCDCConverterData(String macAddress, DCDCConverterData& data);
// Get all devices of a specific type
std::vector<String> getDevicesByType(VictronDeviceType type);
// Enable/disable debug output
void setDebug(bool enable) { debugEnabled = enable; }
// Get last error message
String getLastError() const { return lastError; }
private:
friend class VictronBLEAdvertisedDeviceCallbacks;
struct DeviceInfo {
VictronDeviceConfig config;
VictronDeviceData* data;
uint8_t encryptionKeyBytes[16];
DeviceInfo() : data(nullptr) {
memset(encryptionKeyBytes, 0, 16);
}
~DeviceInfo() {
if (data) delete data;
}
};
std::map<String, DeviceInfo*> devices;
BLEScan* pBLEScan;
VictronDeviceCallback* callback;
bool debugEnabled;
String lastError;
uint32_t scanDuration;
bool initialized;
// Internal methods
bool hexStringToBytes(const String& hex, uint8_t* bytes, size_t len);
bool decryptAdvertisement(const uint8_t* encrypted, size_t encLen,
const uint8_t* key, const uint8_t* iv,
uint8_t* decrypted);
bool parseAdvertisement(const uint8_t* manufacturerData, size_t len,
const String& macAddress);
void processDevice(BLEAdvertisedDevice advertisedDevice);
VictronDeviceData* createDeviceData(VictronDeviceType type);
bool parseSolarCharger(const uint8_t* data, size_t len, SolarChargerData& result);
bool parseBatteryMonitor(const uint8_t* data, size_t len, BatteryMonitorData& result);
bool parseInverter(const uint8_t* data, size_t len, InverterData& result);
bool parseDCDCConverter(const uint8_t* data, size_t len, DCDCConverterData& result);
void debugPrint(const String& message);
void debugPrintHex(const char* label, const uint8_t* data, size_t len);
String macAddressToString(BLEAddress address);
String normalizeMAC(String mac);
};
// BLE scan callback class
class VictronBLEAdvertisedDeviceCallbacks: public BLEAdvertisedDeviceCallbacks {
public:
VictronBLEAdvertisedDeviceCallbacks(VictronBLE* parent) : victronBLE(parent) {}
void onResult(BLEAdvertisedDevice advertisedDevice) override;
private:
VictronBLE* victronBLE;
};
#endif // VICTRON_BLE_H