28 Commits
v0.1.1 ... main

Author SHA1 Message Date
977641b093 Forwarding code 2026-02-17 09:27:48 +11:00
24712c206a Work on receiver and sender 2026-02-15 19:20:03 +11:00
8a2402cb63 Repeater and Test code for ESP Now 2026-02-15 19:10:19 +11:00
a64fef899b New version with smaller memory footprint etc 2026-02-12 18:33:56 +11:00
a843eb924b Keep v0.3.1 2026-02-12 18:10:35 +11:00
5a210fb88f Experimenting with a claude file and created new logging example 2026-02-12 18:04:02 +11:00
30c93af18b Fix status 2026-01-29 18:45:37 +11:00
d9577be900 Scripts and automatic claude update 2026-01-29 18:42:41 +11:00
f9e72a68fe Examples todo 2025-12-30 20:54:04 +11:00
a8d40ba260 Fix notes on testing 2025-12-29 20:35:47 +11:00
af39db8732 Fix name 2025-12-29 20:31:07 +11:00
26b0196791 Decoding working for MPPT 2025-12-29 20:22:41 +11:00
0863f8572c Finally working decode MPPT 2025-12-29 20:00:05 +11:00
d3b1c632db work on better mac address 2025-12-29 19:26:32 +11:00
03d8da3b7d Cleaning up by using structs and reusing data blocks 2025-12-29 19:12:47 +11:00
6a517246ea Experimental version 2025-12-29 13:38:47 +11:00
4bbab345b0 Working serial on S3 too. Interesting... 2025-12-29 11:40:46 +11:00
1a651b149d Merge branch 'main' of https://gitea.sh3d.com.au/sh3d/VictronBLE 2025-12-29 11:16:43 +11:00
cec45524d3 Add core2 2025-12-29 11:16:41 +11:00
2bd6094955 Cleanup only 2025-12-29 11:09:33 +11:00
9f0f2ce8fd Improved structs 2025-12-28 23:35:27 +11:00
8e5eba47d7 Working C3 build 2025-12-28 23:27:40 +11:00
95d83b492a Playing with debug 2025-12-19 12:46:28 +11:00
139c6f961d Work on decoding using structs 2025-12-18 22:27:15 +11:00
2ccac7b0c8 Experimenting and decoding - seems some structs are wrong, check original code 2025-12-18 21:49:04 +11:00
97a71ce34c TODO and m5stick and debug 2025-12-18 20:43:10 +11:00
e827dea4e5 Ignore builds 2025-12-18 18:26:27 +11:00
364462a4ed Fix version for examples 2025-12-18 18:23:31 +11:00
22 changed files with 2272 additions and 369 deletions

193
.claude/CLAUDE.md Normal file
View File

@@ -0,0 +1,193 @@
# VictronBLE Project Context
## Project Overview
Arduino/ESP32 library for reading Victron Energy devices via Bluetooth Low Energy (BLE).
## Key Files
- `src/` - Main library source code
- `examples/` - Example sketches
- `experiment/` - Experimental code
- `library.json` / `library.properties` - PlatformIO/Arduino library config
## Build & Test
- This is an Arduino/PlatformIO library
- Test with PlatformIO: `pio run`
## Session Notes
<!-- Add learnings from each session below -->
### Session: 2026-01-29 18:41
**Modified files:**
- TODO
### Session: 2026-02-11 13:51
**Modified files:**
- .claude/CLAUDE.md
- .claude/scripts/update-claude-md.sh
- TODO
- examples/MultiDevice/src/main.cpp
### Session: 2026-02-11 15:57
**Modified files:**
- .claude/CLAUDE.md
- .claude/scripts/update-claude-md.sh
- TODO
- examples/MultiDevice/src/main.cpp
### Session: 2026-02-12 18:02
**Modified files:**
- .claude/CLAUDE.md
- .claude/scripts/update-claude-md.sh
- TODO
- examples/MultiDevice/src/main.cpp
### Session: 2026-02-12 18:02
**Modified files:**
- .claude/CLAUDE.md
- .claude/scripts/update-claude-md.sh
- TODO
- examples/MultiDevice/src/main.cpp
- library.json
### Session: 2026-02-12 18:06
**Commits:**
```
5a210fb Experimenting with a claude file and created new logging example
```
**Modified files:**
- .claude/CLAUDE.md
- TODO
- examples/Logger/platformio.ini
- examples/Logger/src/main.cpp
- examples/MultiDevice/src/main.cpp
- library.json
### Session: 2026-02-12 18:08
**Commits:**
```
5a210fb Experimenting with a claude file and created new logging example
```
**Modified files:**
- .claude/CLAUDE.md
- README.md
- TODO
- VERSIONS
- examples/Logger/platformio.ini
- examples/Logger/src/main.cpp
- examples/MultiDevice/src/main.cpp
- library.json
- library.properties
### Session: 2026-02-12 18:10
**Commits:**
```
5a210fb Experimenting with a claude file and created new logging example
```
**Modified files:**
- .claude/CLAUDE.md
- README.md
- TODO
- VERSIONS
- examples/Logger/platformio.ini
- examples/Logger/src/main.cpp
- examples/MultiDevice/src/main.cpp
- library.json
- library.properties
### Session: 2026-02-12 18:23
**Commits:**
```
a843eb9 Keep v0.3.1
5a210fb Experimenting with a claude file and created new logging example
```
**Modified files:**
- .claude/CLAUDE.md
- README.md
- VERSIONS
- library.json
- library.properties
- src/VictronBLE.cpp
- src/VictronBLE.h
### Session: 2026-02-12 18:35
**Commits:**
```
a64fef8 New version with smaller memory footprint etc
a843eb9 Keep v0.3.1
5a210fb Experimenting with a claude file and created new logging example
```
**Modified files:**
- .claude/CLAUDE.md
- src/VictronBLE.cpp
- src/VictronBLE.h
### Session: 2026-02-13 11:02
**Modified files:**
- .claude/CLAUDE.md
- src/VictronBLE.cpp
- src/VictronBLE.h
### Session: 2026-02-15 18:59
**Modified files:**
- .claude/CLAUDE.md
- library.json
- src/VictronBLE.cpp
- src/VictronBLE.h
### Session: 2026-02-15 19:06
**Modified files:**
- .claude/CLAUDE.md
- library.json
- src/VictronBLE.cpp
- src/VictronBLE.h
### Session: 2026-02-15 19:10
**Modified files:**
- .claude/CLAUDE.md
- library.json
- src/VictronBLE.cpp
- src/VictronBLE.h
### Session: 2026-02-15 19:18
**Commits:**
```
8a2402c Repeater and Test code for ESP Now
```
**Modified files:**
- .claude/CLAUDE.md
- examples/FakeRepeater/platformio.ini
- examples/FakeRepeater/src/main.cpp
- examples/Receiver/platformio.ini
- examples/Receiver/src/main.cpp
- examples/Repeater/platformio.ini
- examples/Repeater/src/main.cpp
- library.json
### Session: 2026-02-15 19:20
**Commits:**
```
24712c2 Work on receiver and sender
8a2402c Repeater and Test code for ESP Now
```
**Modified files:**
- .claude/CLAUDE.md
- examples/Receiver/platformio.ini
- examples/Receiver/src/main.cpp
- examples/Repeater/src/main.cpp

View File

@@ -0,0 +1,31 @@
#!/bin/bash
# Auto-update CLAUDE.md at end of session
CLAUDE_MD="$(git rev-parse --show-toplevel)/.claude/CLAUDE.md"
TIMESTAMP=$(date '+%Y-%m-%d %H:%M')
# Get recent git activity from this session (last hour)
RECENT_COMMITS=$(git log --oneline --since="1 hour ago" 2>/dev/null | head -5)
MODIFIED_FILES=$(git diff --name-only HEAD~1 2>/dev/null | head -10)
# Append session summary
{
echo ""
echo "### Session: $TIMESTAMP"
if [ -n "$RECENT_COMMITS" ]; then
echo "**Commits:**"
echo "\`\`\`"
echo "$RECENT_COMMITS"
echo "\`\`\`"
fi
if [ -n "$MODIFIED_FILES" ]; then
echo "**Modified files:**"
echo "$MODIFIED_FILES" | sed 's/^/- /'
fi
echo ""
} >> "$CLAUDE_MD"
echo "Updated CLAUDE.md with session summary"

2
.gitignore vendored
View File

@@ -66,3 +66,5 @@ __pycache__/
.Python
venv/
env/
*.tar.gz

View File

@@ -2,14 +2,17 @@
ESP32 library for reading Victron Energy device data via Bluetooth Low Energy (BLE) advertisements.
**⚠️ INITIAL RELEASE - NOT YET TESTED ON HARDWARE**
**⚠️ INITIAL RELEASE - LIMITED TESTING DONE**
This is an initial release (v0.1.1) and has not yet been tested with real Victron devices. Use with caution and please report any issues you encounter. Testing and feedback are greatly appreciated!
This is an initial release (v0.3.1) and has been tested with MPPT on an ESP32-S3 and ESP32-C3.
Use with caution and please report any issues you encounter. Testing and feedback are greatly appreciated!
---
Why another library? Most of the Victron BLE examples are built into other frameworks (e.g. ESPHome) and I want a library that can be used in all ESP32 systems, including ESPHome or other frameworks. With long term plan to try and move others to this library and improve code with many eyes.
Currently supportin ESP32 S and C series (tested on older ESP32, and ESP32-S3 and ESP32-C3). Other chipsets can be added with abstraction of Bluetooth code.
## Features
-**Multiple Device Support**: Monitor multiple Victron devices simultaneously

31
TODO Normal file
View File

@@ -0,0 +1,31 @@
# Misc Stuff
* Consider support for upper/lower case MAC address and optionaly ":"
* Scanning - list devices publishing, should be able to get list even without knowing MAC / Encryption key
* Struct vs Manual
* Sh3dNg version and examples uses structs to get data - seems to work
* Example generated uses manually managing a string
* Reconsider what is best and use
# Debugging
Use standard ESP32 debugging stuff. Handler should not be string but more like printf? Consider alternatives
Make sure debugging can be to file or serial etc
# Decrypting
Review 2 methods of decrypting and check it is working correctly
Seems mbedTLS is better choice as auotmatic hardware support even on ESP32 - where as the esp_aes version is not portable.
# Examples
* Multiple threads - scan BLE in the background
* Example scan anything
* With and without Callback
* Platformio.ini files into example data
# Logging and Debugging
* The debugging is very verbose and hard to read - maybe group the messages together for repeats

View File

@@ -1,5 +1,12 @@
# Version History
## 0.3.1 (2026-02-11)
### Changes
- Added Logger example: change-detection logging for Solar Charger data
- Added message type counters to MultiDevice example
- Tested with MPPT Solar Chargers on ESP32-S3 and ESP32-C3
## 0.1.1 (2025-12-18)
Initial release - not yet tested on hardware.

View File

@@ -0,0 +1,48 @@
[env:esp32dev]
platform = espressif32
board = esp32dev
framework = arduino
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
[env:esp32-s3]
platform = espressif32
board = esp32-s3-devkitc-1
framework = arduino
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
build_flags =
-D ARDUINO_USB_MODE=1
-D ARDUINO_USB_CDC_ON_BOOT=1
[env:esp32-c3]
platform = espressif32
framework = arduino
board = esp32-c3-devkitm-1
board_build.mcu = esp32c3
board_build.f_cpu = 160000000L
board_build.flash_mode = dio
board_build.partitions = default.csv
monitor_speed = 115200
monitor_filters = time, default, esp32_exception_decoder
upload_speed = 921600
build_flags =
-Os
-D ARDUINO_ESP32C3_DEV
-D CONFIG_IDF_TARGET_ESP32C3
-D ARDUINO_USB_MODE=1
-D ARDUINO_USB_CDC_ON_BOOT=1
[env:m5stick]
platform = espressif32
board = m5stick-c
framework = arduino
board_build.mcu = esp32
board_build.f_cpu = 240000000L
board_build.partitions = no_ota.csv
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
build_flags =
-Os
lib_deps =
M5StickC

View File

@@ -0,0 +1,102 @@
/**
* VictronBLE FakeRepeater Example
*
* Sends fake Solar Charger data over ESPNow every 10 seconds.
* Use with the Receiver example to test ESPNow without needing
* a real Victron device or the VictronBLE library.
*
* No VictronBLE dependency - just WiFi + ESPNow.
*/
#include <Arduino.h>
#include <WiFi.h>
#include <esp_now.h>
// ESPNow packet structure - must match Receiver
struct __attribute__((packed)) SolarChargerPacket {
uint8_t chargeState;
float batteryVoltage; // V
float batteryCurrent; // A
float panelVoltage; // V
float panelPower; // W
uint16_t yieldToday; // Wh
float loadCurrent; // A
int8_t rssi; // BLE RSSI
char deviceName[16]; // Null-terminated, truncated
};
static const uint8_t BROADCAST_ADDR[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
static uint32_t sendCount = 0;
static unsigned long lastSendTime = 0;
static const unsigned long SEND_INTERVAL_MS = 10000;
void setup() {
Serial.begin(115200);
delay(1000);
Serial.println("\n=== VictronBLE FakeRepeater ===\n");
WiFi.mode(WIFI_STA);
WiFi.disconnect();
Serial.println("MAC: " + WiFi.macAddress());
if (esp_now_init() != ESP_OK) {
Serial.println("ERROR: ESPNow init failed!");
while (1) delay(1000);
}
esp_now_peer_info_t peerInfo = {};
memcpy(peerInfo.peer_addr, BROADCAST_ADDR, 6);
peerInfo.channel = 0;
peerInfo.encrypt = false;
if (esp_now_add_peer(&peerInfo) != ESP_OK) {
Serial.println("ERROR: Failed to add broadcast peer!");
while (1) delay(1000);
}
Serial.println("ESPNow initialized, sending fake data every 10s");
Serial.println("Packet size: " + String(sizeof(SolarChargerPacket)) + " bytes\n");
}
void loop() {
unsigned long now = millis();
if (now - lastSendTime < SEND_INTERVAL_MS) {
delay(100);
return;
}
lastSendTime = now;
sendCount++;
// Generate varying fake data
SolarChargerPacket pkt;
pkt.chargeState = (sendCount % 4) + 3; // Cycle through Bulk(3), Absorption(4), Float(5), Storage(6)
pkt.batteryVoltage = 51.0f + (sendCount % 20) * 0.15f;
pkt.batteryCurrent = 2.0f + (sendCount % 10) * 0.5f;
pkt.panelVoltage = 65.0f + (sendCount % 15) * 0.8f;
pkt.panelPower = pkt.batteryCurrent * pkt.batteryVoltage;
pkt.yieldToday = 100 + sendCount * 10;
pkt.loadCurrent = 0;
pkt.rssi = -60 - (sendCount % 30);
memset(pkt.deviceName, 0, sizeof(pkt.deviceName));
strncpy(pkt.deviceName, "FakeMPPT", sizeof(pkt.deviceName) - 1);
esp_err_t result = esp_now_send(BROADCAST_ADDR,
reinterpret_cast<const uint8_t*>(&pkt),
sizeof(pkt));
if (result != ESP_OK) {
Serial.println("[TX FAIL] " + String(esp_err_to_name(result)));
} else {
Serial.printf("[TX #%lu] %s Batt:%.2fV %.2fA PV:%.0fW Yield:%uWh RSSI:%d\n",
sendCount,
pkt.deviceName,
pkt.batteryVoltage,
pkt.batteryCurrent,
pkt.panelPower,
pkt.yieldToday,
pkt.rssi);
}
}

View File

@@ -0,0 +1,143 @@
[env]
lib_extra_dirs = ../..
[env:esp32dev]
platform = espressif32
board = esp32dev
framework = arduino
; Serial monitor settings
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
; Build flags
build_flags =
-DCORE_DEBUG_LEVEL=3
; Library dependencies
lib_deps =
; VictronBLE library will be automatically included from parent directory
; Optional: Specify partition scheme if needed
; board_build.partitions = default.csv
[env:esp32-s3]
platform = espressif32
board = esp32-s3-devkitc-1
framework = arduino
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
build_flags =
-D ARDUINO_USB_MODE=1
-D ARDUINO_USB_CDC_ON_BOOT=1
# -DCORE_DEBUG_LEVEL=3
[env:esp32-s3-debug]
platform = espressif32
board = esp32-s3-devkitc-1
framework = arduino
#monitor_speed = 115200
#monitor_filters = esp32_exception_decoder
upload_protocol = esp-builtin
; Debug configuration for GDB
debug_tool = esp-builtin
debug_init_break = tbreak setup
debug_speed = 5000
debug_load_mode = always
; Build flags for debugging
build_flags =
-DCORE_DEBUG_LEVEL=5 ; Maximum ESP32 debug level
-O0 ; Disable optimization for debugging
-g3 ; Maximum debug information
build_type = debug
[env:esp32-c3]
platform = espressif32
framework = arduino
board = esp32-c3-devkitm-1
board_build.mcu = esp32c3
board_build.f_cpu = 160000000L
board_build.flash_mode = dio
board_build.partitions = default.csv
monitor_speed = 115200
monitor_filters = time, default, esp32_exception_decoder
upload_speed = 921600
# NOTE: Need these two ARDUIO_USB modes to work with serial
build_flags =
-Os
-I src
-D ARDUINO_ESP32C3_DEV
-D CONFIG_IDF_TARGET_ESP32C3
-D ARDUINO_USB_MODE=1
-D ARDUINO_USB_CDC_ON_BOOT=1
lib_deps =
elapsedMillis
[env:esp32-c3-debug]
platform = espressif32
board = esp32-c3-devkitc-02
framework = arduino
monitor_speed = 115200
; Upload configuration
upload_protocol = esp-builtin
; Debug configuration for GDB
debug_tool = esp-builtin
debug_init_break = tbreak setup
debug_speed = 5000
debug_load_mode = always
; Build flags for debugging
build_flags =
-DCORE_DEBUG_LEVEL=5 ; Maximum ESP32 debug level
-O0 ; Disable optimization for debugging
-g3 ; Maximum debug information
build_type = debug
[env:m5stick]
platform = espressif32
board = m5stick-c
framework = arduino
board_build.mcu = esp32
board_build.f_cpu = 240000000L
board_build.partitions = no_ota.csv
#upload_protocol = espota
#upload_port = Button.local
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
#debug_tool = esp-prog ; esp-bridge, esp-prog ; or ftdi, esp-builtin, jlink, etc.
# debug_speed = 5000 ; optional: JTAG speed in kHz
#build_flags =
# -DCORE_DEBUG_LEVEL=5 ; ESP32 debug level
# -O0 ; no optimization
# -g3 ; max debug info
build_flags =
-Os
lib_deps =
M5StickC
elapsedMillis
[env:tough]
board = m5stack-core2
board_build.mcu = esp32
platform = espressif32
framework = arduino
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
debug_tool = esp-bridge ; esp-bridge, esp-prog ; or ftdi, esp-builtin, jlink, etc.
# debug_speed = 5000 ; optional: JTAG speed in kHz
build_flags =
-DCORE_DEBUG_LEVEL=5 ; ESP32 debug level
-O0 ; no optimization
-g3 ; max debug info
-DARDUINO_M5STACK_TOUGH
-DDISPLAY_WIDTH=320
-DDISPLAY_HEIGHT=240
-DHAS_TOUCH=1
-DBUFFER_LINES=10
lib_deps =
M5Unified
elapsedMillis

View File

@@ -0,0 +1,167 @@
/**
* VictronBLE Logger Example
*
* Demonstrates change-detection logging for Solar Charger data.
* Only logs to serial when a value changes (ignoring RSSI), or once
* per minute if nothing has changed. This keeps serial output quiet
* and is useful for long-running monitoring / data logging.
*
* Setup:
* 1. Get your device encryption keys from the VictronConnect app
* 2. Update the device configurations below with your MAC and key
*/
#include <Arduino.h>
#include "VictronBLE.h"
VictronBLE victron;
// Tracks last-logged values per device for change detection
struct SolarChargerSnapshot {
bool valid = false;
SolarChargerState chargeState;
float batteryVoltage;
float batteryCurrent;
float panelVoltage;
float panelPower;
uint16_t yieldToday;
float loadCurrent;
unsigned long lastLogTime = 0;
uint32_t packetsSinceLastLog = 0;
};
// Store a snapshot per device (index by MAC string)
static const int MAX_DEVICES = 4;
static String deviceMACs[MAX_DEVICES];
static SolarChargerSnapshot snapshots[MAX_DEVICES];
static int deviceCount = 0;
static const unsigned long LOG_INTERVAL_MS = 60000; // 1 minute
static int findOrAddDevice(const String& mac) {
for (int i = 0; i < deviceCount; i++) {
if (deviceMACs[i] == mac) return i;
}
if (deviceCount < MAX_DEVICES) {
deviceMACs[deviceCount] = mac;
return deviceCount++;
}
return -1;
}
static String chargeStateName(SolarChargerState state) {
switch (state) {
case CHARGER_OFF: return "Off";
case CHARGER_LOW_POWER: return "Low Power";
case CHARGER_FAULT: return "Fault";
case CHARGER_BULK: return "Bulk";
case CHARGER_ABSORPTION: return "Absorption";
case CHARGER_FLOAT: return "Float";
case CHARGER_STORAGE: return "Storage";
case CHARGER_EQUALIZE: return "Equalize";
case CHARGER_INVERTING: return "Inverting";
case CHARGER_POWER_SUPPLY: return "Power Supply";
case CHARGER_EXTERNAL_CONTROL: return "External Control";
default: return "Unknown";
}
}
static void logData(const SolarChargerData& data, const char* reason, uint32_t packets) {
Serial.println("[" + data.deviceName + "] " + reason +
" pkts:" + String(packets) +
" | State:" + chargeStateName(data.chargeState) +
" Batt:" + String(data.batteryVoltage, 2) + "V" +
" " + String(data.batteryCurrent, 2) + "A" +
" PV:" + String(data.panelVoltage, 1) + "V" +
" " + String(data.panelPower, 0) + "W" +
" Yield:" + String(data.yieldToday) + "Wh" +
(data.loadCurrent > 0 ? " Load:" + String(data.loadCurrent, 2) + "A" : ""));
}
class LoggerCallback : public VictronDeviceCallback {
public:
void onSolarChargerData(const SolarChargerData& data) override {
int idx = findOrAddDevice(data.macAddress);
if (idx < 0) return;
SolarChargerSnapshot& prev = snapshots[idx];
unsigned long now = millis();
prev.packetsSinceLastLog++;
if (!prev.valid) {
// First reading - always log
logData(data, "INIT", prev.packetsSinceLastLog);
} else {
// Check for changes (everything except RSSI)
bool changed = false;
if (prev.chargeState != data.chargeState) changed = true;
if (prev.batteryVoltage != data.batteryVoltage) changed = true;
if (prev.batteryCurrent != data.batteryCurrent) changed = true;
if (prev.panelVoltage != data.panelVoltage) changed = true;
if (prev.panelPower != data.panelPower) changed = true;
if (prev.yieldToday != data.yieldToday) changed = true;
if (prev.loadCurrent != data.loadCurrent) changed = true;
if (changed) {
logData(data, "CHG", prev.packetsSinceLastLog);
} else if (now - prev.lastLogTime >= LOG_INTERVAL_MS) {
logData(data, "HEARTBEAT", prev.packetsSinceLastLog);
} else {
return; // Nothing to log
}
}
// Update snapshot
prev.packetsSinceLastLog = 0;
prev.valid = true;
prev.chargeState = data.chargeState;
prev.batteryVoltage = data.batteryVoltage;
prev.batteryCurrent = data.batteryCurrent;
prev.panelVoltage = data.panelVoltage;
prev.panelPower = data.panelPower;
prev.yieldToday = data.yieldToday;
prev.loadCurrent = data.loadCurrent;
prev.lastLogTime = now;
}
};
LoggerCallback callback;
void setup() {
Serial.begin(115200);
delay(1000);
Serial.println("\n=== VictronBLE Logger Example ===\n");
if (!victron.begin(5)) {
Serial.println("ERROR: Failed to initialize VictronBLE!");
Serial.println(victron.getLastError());
while (1) delay(1000);
}
victron.setDebug(false);
victron.setCallback(&callback);
// Add your devices here
victron.addDevice(
"Rainbow48V",
"E4:05:42:34:14:F3",
"0ec3adf7433dd61793ff2f3b8ad32ed8",
DEVICE_TYPE_SOLAR_CHARGER
);
victron.addDevice(
"ScottTrailer",
"e64559783cfb",
"3fa658aded4f309b9bc17a2318cb1f56",
DEVICE_TYPE_SOLAR_CHARGER
);
Serial.println("Configured " + String(victron.getDeviceCount()) + " devices");
Serial.println("Logging on change, or every 60s heartbeat\n");
}
void loop() {
victron.loop();
delay(100);
}

View File

@@ -26,13 +26,118 @@ platform = espressif32
board = esp32-s3-devkitc-1
framework = arduino
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
build_flags =
-DCORE_DEBUG_LEVEL=3
-D ARDUINO_USB_MODE=1
-D ARDUINO_USB_CDC_ON_BOOT=1
# -DCORE_DEBUG_LEVEL=3
[env:esp32-s3-debug]
platform = espressif32
board = esp32-s3-devkitc-1
framework = arduino
#monitor_speed = 115200
#monitor_filters = esp32_exception_decoder
upload_protocol = esp-builtin
; Debug configuration for GDB
debug_tool = esp-builtin
debug_init_break = tbreak setup
debug_speed = 5000
debug_load_mode = always
; Build flags for debugging
build_flags =
-DCORE_DEBUG_LEVEL=5 ; Maximum ESP32 debug level
-O0 ; Disable optimization for debugging
-g3 ; Maximum debug information
build_type = debug
[env:esp32-c3]
platform = espressif32
framework = arduino
board = esp32-c3-devkitm-1
board_build.mcu = esp32c3
board_build.f_cpu = 160000000L
board_build.flash_mode = dio
board_build.partitions = default.csv
monitor_speed = 115200
monitor_filters = time, default, esp32_exception_decoder
upload_speed = 921600
# NOTE: Need these two ARDUIO_USB modes to work with serial
build_flags =
-Os
-I src
-D ARDUINO_ESP32C3_DEV
-D CONFIG_IDF_TARGET_ESP32C3
-D ARDUINO_USB_MODE=1
-D ARDUINO_USB_CDC_ON_BOOT=1
lib_deps =
elapsedMillis
[env:esp32-c3-debug]
platform = espressif32
board = esp32-c3-devkitc-02
framework = arduino
monitor_speed = 115200
; Upload configuration
upload_protocol = esp-builtin
; Debug configuration for GDB
debug_tool = esp-builtin
debug_init_break = tbreak setup
debug_speed = 5000
debug_load_mode = always
; Build flags for debugging
build_flags =
-DCORE_DEBUG_LEVEL=3
-DCORE_DEBUG_LEVEL=5 ; Maximum ESP32 debug level
-O0 ; Disable optimization for debugging
-g3 ; Maximum debug information
build_type = debug
[env:m5stick]
platform = espressif32
board = m5stick-c
framework = arduino
board_build.mcu = esp32
board_build.f_cpu = 240000000L
board_build.partitions = no_ota.csv
#upload_protocol = espota
#upload_port = Button.local
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
#debug_tool = esp-prog ; esp-bridge, esp-prog ; or ftdi, esp-builtin, jlink, etc.
# debug_speed = 5000 ; optional: JTAG speed in kHz
#build_flags =
# -DCORE_DEBUG_LEVEL=5 ; ESP32 debug level
# -O0 ; no optimization
# -g3 ; max debug info
build_flags =
-Os
lib_deps =
M5StickC
elapsedMillis
[env:tough]
board = m5stack-core2
board_build.mcu = esp32
platform = espressif32
framework = arduino
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
debug_tool = esp-bridge ; esp-bridge, esp-prog ; or ftdi, esp-builtin, jlink, etc.
# debug_speed = 5000 ; optional: JTAG speed in kHz
build_flags =
-DCORE_DEBUG_LEVEL=5 ; ESP32 debug level
-O0 ; no optimization
-g3 ; max debug info
-DARDUINO_M5STACK_TOUGH
-DDISPLAY_WIDTH=320
-DDISPLAY_HEIGHT=240
-DHAS_TOUCH=1
-DBUFFER_LINES=10
lib_deps =
M5Unified
elapsedMillis

View File

@@ -1,13 +1,13 @@
/**
* VictronBLE Example
*
*
* This example demonstrates how to use the VictronBLE library to read data
* from multiple Victron devices simultaneously.
*
*
* Hardware Requirements:
* - ESP32 board
* - Victron devices with BLE (SmartSolar, SmartShunt, etc.)
*
*
* Setup:
* 1. Get your device encryption keys from the VictronConnect app:
* - Open VictronConnect
@@ -16,7 +16,7 @@
* - Enable "Instant readout via Bluetooth"
* - Click "Show" next to "Instant readout details"
* - Copy the encryption key (32 hex characters)
*
*
* 2. Update the device configurations below with your devices' MAC addresses
* and encryption keys
*/
@@ -30,8 +30,14 @@ VictronBLE victron;
// Device callback class - gets called when new data arrives
class MyVictronCallback : public VictronDeviceCallback {
public:
uint32_t solarChargerCount = 0;
uint32_t batteryMonitorCount = 0;
uint32_t inverterCount = 0;
uint32_t dcdcConverterCount = 0;
void onSolarChargerData(const SolarChargerData& data) override {
Serial.println("\n=== Solar Charger: " + data.deviceName + " ===");
solarChargerCount++;
Serial.println("\n=== Solar Charger: " + data.deviceName + " (#" + String(solarChargerCount) + ") ===");
Serial.println("MAC: " + data.macAddress);
Serial.println("RSSI: " + String(data.rssi) + " dBm");
Serial.println("State: " + getChargeStateName(data.chargeState));
@@ -45,29 +51,30 @@ public:
}
Serial.println("Last Update: " + String((millis() - data.lastUpdate) / 1000) + "s ago");
}
void onBatteryMonitorData(const BatteryMonitorData& data) override {
Serial.println("\n=== Battery Monitor: " + data.deviceName + " ===");
batteryMonitorCount++;
Serial.println("\n=== Battery Monitor: " + data.deviceName + " (#" + String(batteryMonitorCount) + ") ===");
Serial.println("MAC: " + data.macAddress);
Serial.println("RSSI: " + String(data.rssi) + " dBm");
Serial.println("Voltage: " + String(data.voltage, 2) + " V");
Serial.println("Current: " + String(data.current, 2) + " A");
Serial.println("SOC: " + String(data.soc, 1) + " %");
Serial.println("Consumed: " + String(data.consumedAh, 2) + " Ah");
if (data.remainingMinutes < 65535) {
int hours = data.remainingMinutes / 60;
int mins = data.remainingMinutes % 60;
Serial.println("Time Remaining: " + String(hours) + "h " + String(mins) + "m");
}
if (data.temperature > 0) {
Serial.println("Temperature: " + String(data.temperature, 1) + " °C");
}
if (data.auxVoltage > 0) {
Serial.println("Aux Voltage: " + String(data.auxVoltage, 2) + " V");
}
// Print alarms
if (data.alarmLowVoltage || data.alarmHighVoltage || data.alarmLowSOC ||
data.alarmLowTemperature || data.alarmHighTemperature) {
@@ -79,21 +86,22 @@ public:
if (data.alarmHighTemperature) Serial.print("HIGH-TEMP ");
Serial.println();
}
Serial.println("Last Update: " + String((millis() - data.lastUpdate) / 1000) + "s ago");
}
void onInverterData(const InverterData& data) override {
Serial.println("\n=== Inverter/Charger: " + data.deviceName + " ===");
inverterCount++;
Serial.println("\n=== Inverter/Charger: " + data.deviceName + " (#" + String(inverterCount) + ") ===");
Serial.println("MAC: " + data.macAddress);
Serial.println("RSSI: " + String(data.rssi) + " dBm");
Serial.println("Battery: " + String(data.batteryVoltage, 2) + " V");
Serial.println("Current: " + String(data.batteryCurrent, 2) + " A");
Serial.println("AC Power: " + String(data.acPower) + " W");
Serial.println("State: " + String(data.state));
// Print alarms
if (data.alarmLowVoltage || data.alarmHighVoltage ||
if (data.alarmLowVoltage || data.alarmHighVoltage ||
data.alarmHighTemperature || data.alarmOverload) {
Serial.print("ALARMS: ");
if (data.alarmLowVoltage) Serial.print("LOW-V ");
@@ -102,12 +110,13 @@ public:
if (data.alarmOverload) Serial.print("OVERLOAD ");
Serial.println();
}
Serial.println("Last Update: " + String((millis() - data.lastUpdate) / 1000) + "s ago");
}
void onDCDCConverterData(const DCDCConverterData& data) override {
Serial.println("\n=== DC-DC Converter: " + data.deviceName + " ===");
dcdcConverterCount++;
Serial.println("\n=== DC-DC Converter: " + data.deviceName + " (#" + String(dcdcConverterCount) + ") ===");
Serial.println("MAC: " + data.macAddress);
Serial.println("RSSI: " + String(data.rssi) + " dBm");
Serial.println("Input: " + String(data.inputVoltage, 2) + " V");
@@ -119,7 +128,7 @@ public:
}
Serial.println("Last Update: " + String((millis() - data.lastUpdate) / 1000) + "s ago");
}
private:
String getChargeStateName(SolarChargerState state) {
switch (state) {
@@ -144,59 +153,85 @@ MyVictronCallback callback;
void setup() {
Serial.begin(115200);
delay(1000);
Serial.println("\n\n=================================");
Serial.println("VictronBLE Multi-Device Example");
Serial.println("=================================\n");
// Initialize VictronBLE with 5 second scan duration
if (!victron.begin(5)) {
Serial.println("ERROR: Failed to initialize VictronBLE!");
Serial.println(victron.getLastError());
while (1) delay(1000);
}
// Enable debug output (optional)
victron.setDebug(true);
victron.setDebug(false);
// Set callback for data updates
victron.setCallback(&callback);
// Add your devices here
// Replace with your actual MAC addresses and encryption keys
// CORRECT in Alternative
// Rainbow48V at MAC e4:05:42:34:14:f3
// Temporary - Scott Example
victron.addDevice(
"Rainbow48V", // Device name
"E4:05:42:34:14:F3", // MAC address
"0ec3adf7433dd61793ff2f3b8ad32ed8", // Encryption key (32 hex chars)
DEVICE_TYPE_SOLAR_CHARGER // Device type
);
victron.addDevice(
"ScottTrailer", // Device name
"e64559783cfb",
"3fa658aded4f309b9bc17a2318cb1f56",
DEVICE_TYPE_SOLAR_CHARGER // Device type
);
// Example: Solar Charger #1
/*
victron.addDevice(
"MPPT 100/30", // Device name
"E7:48:D4:28:B7:9C", // MAC address
"0df4d0395b7d1a876c0c33ecb9e70dcd", // Encryption key (32 hex chars)
DEVICE_TYPE_SOLAR_CHARGER // Device type
);
*/
// Example: Solar Charger #2
/*
victron.addDevice(
"MPPT 75/15",
"AA:BB:CC:DD:EE:FF",
"1234567890abcdef1234567890abcdef",
DEVICE_TYPE_SOLAR_CHARGER
);
*/
// Example: Battery Monitor (SmartShunt)
/*
victron.addDevice(
"SmartShunt",
"11:22:33:44:55:66",
"fedcba0987654321fedcba0987654321",
DEVICE_TYPE_BATTERY_MONITOR
);
*/
// Example: Inverter/Charger
/*
victron.addDevice(
"MultiPlus",
"99:88:77:66:55:44",
"abcdefabcdefabcdefabcdefabcdefab",
DEVICE_TYPE_INVERTER
);
*/
Serial.println("Configured " + String(victron.getDeviceCount()) + " devices");
Serial.println("\nStarting BLE scan...\n");
}
@@ -204,7 +239,7 @@ void setup() {
void loop() {
// Process BLE scanning and data updates
victron.loop();
// Optional: You can also manually query device data
// This is useful if you're not using callbacks
/*
@@ -212,13 +247,13 @@ void loop() {
if (victron.getSolarChargerData("E7:48:D4:28:B7:9C", solarData)) {
// Do something with solarData
}
BatteryMonitorData batteryData;
if (victron.getBatteryMonitorData("11:22:33:44:55:66", batteryData)) {
// Do something with batteryData
}
*/
// Add a small delay to avoid overwhelming the serial output
delay(100);
}

View File

@@ -0,0 +1,49 @@
[env:esp32dev]
platform = espressif32
board = esp32dev
framework = arduino
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
[env:esp32-s3]
platform = espressif32
board = esp32-s3-devkitc-1
framework = arduino
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
build_flags =
-D ARDUINO_USB_MODE=1
-D ARDUINO_USB_CDC_ON_BOOT=1
[env:m5stick]
platform = espressif32
board = m5stick-c
framework = arduino
board_build.mcu = esp32
board_build.f_cpu = 240000000L
board_build.partitions = no_ota.csv
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
build_flags =
-Os
-D USE_M5STICK
lib_deps =
M5StickC
[env:esp32-c3]
platform = espressif32
framework = arduino
board = esp32-c3-devkitm-1
board_build.mcu = esp32c3
board_build.f_cpu = 160000000L
board_build.flash_mode = dio
board_build.partitions = default.csv
monitor_speed = 115200
monitor_filters = time, default, esp32_exception_decoder
upload_speed = 921600
build_flags =
-Os
-D ARDUINO_ESP32C3_DEV
-D CONFIG_IDF_TARGET_ESP32C3
-D ARDUINO_USB_MODE=1
-D ARDUINO_USB_CDC_ON_BOOT=1

View File

@@ -0,0 +1,221 @@
/**
* VictronBLE ESPNow Receiver
*
* Standalone receiver for data sent by the Repeater example.
* Does NOT depend on VictronBLE library - just ESPNow.
*
* Flash this on a second ESP32 and it will print Solar Charger
* data received over ESPNow from the Repeater.
*/
#include <Arduino.h>
#include <WiFi.h>
#include <esp_now.h>
#ifdef USE_M5STICK
#include <M5StickC.h>
#endif
// ESPNow packet structure - must match Repeater
struct __attribute__((packed)) SolarChargerPacket {
uint8_t chargeState;
float batteryVoltage; // V
float batteryCurrent; // A
float panelVoltage; // V
float panelPower; // W
uint16_t yieldToday; // Wh
float loadCurrent; // A
int8_t rssi; // BLE RSSI
char deviceName[16]; // Null-terminated, truncated
};
static uint32_t recvCount = 0;
#ifdef USE_M5STICK
// Display: cache latest packet per device for screen rotation
static const int MAX_DISPLAY_DEVICES = 4;
static SolarChargerPacket displayPackets[MAX_DISPLAY_DEVICES];
static bool displayValid[MAX_DISPLAY_DEVICES] = {};
static int displayCount = 0;
static int displayPage = 0; // Which device to show
static bool displayDirty = true;
static unsigned long lastPageSwitch = 0;
static const unsigned long PAGE_SWITCH_MS = 5000; // Rotate pages every 5s
static int findOrAddDisplay(const char* name) {
for (int i = 0; i < displayCount; i++) {
if (strncmp(displayPackets[i].deviceName, name, 16) == 0) return i;
}
if (displayCount < MAX_DISPLAY_DEVICES) return displayCount++;
return -1;
}
#endif
static const char* chargeStateName(uint8_t state) {
switch (state) {
case 0: return "Off";
case 1: return "Low Power";
case 2: return "Fault";
case 3: return "Bulk";
case 4: return "Absorption";
case 5: return "Float";
case 6: return "Storage";
case 7: return "Equalize";
case 9: return "Inverting";
case 11: return "Power Supply";
case 252: return "External Control";
default: return "Unknown";
}
}
void onDataRecv(const uint8_t* senderMac, const uint8_t* data, int len) {
if (len != sizeof(SolarChargerPacket)) {
Serial.println("Unexpected packet size: " + String(len));
return;
}
const auto* pkt = reinterpret_cast<const SolarChargerPacket*>(data);
recvCount++;
// Ensure device name is null-terminated even if corrupted
char name[17];
memcpy(name, pkt->deviceName, 16);
name[16] = '\0';
Serial.printf("[RX #%lu] %s | State:%s Batt:%.2fV %.2fA PV:%.1fV %.0fW Yield:%uWh",
recvCount,
name,
chargeStateName(pkt->chargeState),
pkt->batteryVoltage,
pkt->batteryCurrent,
pkt->panelVoltage,
pkt->panelPower,
pkt->yieldToday);
if (pkt->loadCurrent > 0) {
Serial.printf(" Load:%.2fA", pkt->loadCurrent);
}
Serial.printf(" RSSI:%ddBm From:%02X:%02X:%02X:%02X:%02X:%02X\n",
pkt->rssi,
senderMac[0], senderMac[1], senderMac[2],
senderMac[3], senderMac[4], senderMac[5]);
#ifdef USE_M5STICK
int idx = findOrAddDisplay(name);
if (idx >= 0) {
displayPackets[idx] = *pkt;
displayValid[idx] = true;
displayDirty = true;
}
#endif
}
void setup() {
#ifdef USE_M5STICK
M5.begin();
M5.Lcd.setRotation(3); // Landscape, USB on right
M5.Lcd.fillScreen(BLACK);
M5.Lcd.setTextColor(WHITE, BLACK);
M5.Lcd.setTextSize(1);
M5.Lcd.setCursor(0, 0);
M5.Lcd.println("ESPNow Receiver");
M5.Lcd.println("Waiting...");
#endif
Serial.begin(115200);
delay(1000);
Serial.println("\n=== VictronBLE ESPNow Receiver ===\n");
// Init WiFi in STA mode (required for ESPNow)
WiFi.mode(WIFI_STA);
WiFi.disconnect();
Serial.println("MAC: " + WiFi.macAddress());
// Init ESPNow
if (esp_now_init() != ESP_OK) {
Serial.println("ERROR: ESPNow init failed!");
while (1) delay(1000);
}
esp_now_register_recv_cb(onDataRecv);
Serial.println("ESPNow initialized, waiting for packets...");
Serial.println("Expecting " + String(sizeof(SolarChargerPacket)) + " byte packets\n");
}
void loop() {
#ifdef USE_M5STICK
M5.update();
// Button A (front): manually cycle to next device
if (M5.BtnA.wasPressed()) {
if (displayCount > 0) {
displayPage = (displayPage + 1) % displayCount;
displayDirty = true;
lastPageSwitch = millis();
}
}
// Auto-rotate pages every 5 seconds if multiple devices
if (displayCount > 1) {
unsigned long now = millis();
if (now - lastPageSwitch >= PAGE_SWITCH_MS) {
lastPageSwitch = now;
displayPage = (displayPage + 1) % displayCount;
displayDirty = true;
}
}
// Redraw screen when data changes or page switches
if (displayDirty && displayCount > 0) {
displayDirty = false;
int p = displayPage % displayCount;
if (!displayValid[p]) { delay(100); return; }
const auto& pkt = displayPackets[p];
M5.Lcd.fillScreen(BLACK);
M5.Lcd.setCursor(0, 0);
// Row 0: device name + page indicator
M5.Lcd.setTextColor(CYAN, BLACK);
M5.Lcd.printf("%s", pkt.deviceName);
if (displayCount > 1) {
M5.Lcd.printf(" [%d/%d]", p + 1, displayCount);
}
M5.Lcd.println();
// Row 1: charge state
M5.Lcd.setTextColor(YELLOW, BLACK);
M5.Lcd.printf("State: %s\n", chargeStateName(pkt.chargeState));
// Row 2: battery voltage + current (large-ish)
M5.Lcd.setTextColor(GREEN, BLACK);
M5.Lcd.setTextSize(2);
M5.Lcd.printf("%.2fV\n", pkt.batteryVoltage);
M5.Lcd.setTextSize(1);
M5.Lcd.setTextColor(WHITE, BLACK);
M5.Lcd.printf("Batt: %.2fA\n", pkt.batteryCurrent);
// Row 3: PV
M5.Lcd.printf("PV: %.1fV %.0fW\n", pkt.panelVoltage, pkt.panelPower);
// Row 4: yield + load
M5.Lcd.printf("Yield: %uWh", pkt.yieldToday);
if (pkt.loadCurrent > 0) {
M5.Lcd.printf(" Ld:%.1fA", pkt.loadCurrent);
}
M5.Lcd.println();
// Row 5: stats
M5.Lcd.setTextColor(DARKGREY, BLACK);
M5.Lcd.printf("RSSI:%d RX:%lu", pkt.rssi, recvCount);
}
#endif
delay(100);
}

View File

@@ -0,0 +1,57 @@
[env]
lib_extra_dirs = ../..
[env:esp32dev]
platform = espressif32
board = esp32dev
framework = arduino
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
build_flags =
-DCORE_DEBUG_LEVEL=3
[env:esp32-s3]
platform = espressif32
board = esp32-s3-devkitc-1
framework = arduino
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
build_flags =
-D ARDUINO_USB_MODE=1
-D ARDUINO_USB_CDC_ON_BOOT=1
[env:esp32-c3]
platform = espressif32
framework = arduino
board = esp32-c3-devkitm-1
board_build.mcu = esp32c3
board_build.f_cpu = 160000000L
board_build.flash_mode = dio
board_build.partitions = huge_app.csv
monitor_speed = 115200
monitor_filters = time, default, esp32_exception_decoder
upload_speed = 921600
build_flags =
-Os
-I src
-D ARDUINO_ESP32C3_DEV
-D CONFIG_IDF_TARGET_ESP32C3
-D ARDUINO_USB_MODE=1
-D ARDUINO_USB_CDC_ON_BOOT=1
lib_deps =
elapsedMillis
[env:m5stick]
platform = espressif32
board = m5stick-c
framework = arduino
board_build.mcu = esp32
board_build.f_cpu = 240000000L
board_build.partitions = no_ota.csv
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
build_flags =
-Os
lib_deps =
M5StickC
elapsedMillis

View File

@@ -0,0 +1,189 @@
/**
* VictronBLE Repeater Example
*
* Collects Solar Charger data via BLE and transmits the latest
* readings over ESPNow broadcast every 30 seconds. Place this ESP32
* near Victron devices and use a separate Receiver ESP32 at a distance.
*
* ESPNow range is typically much greater than BLE (~200m+ line of sight).
*
* Setup:
* 1. Get your device encryption keys from the VictronConnect app
* 2. Update the device configurations below with your MAC and key
* 3. Flash the Receiver example on a second ESP32
*/
#include <Arduino.h>
#include <WiFi.h>
#include <esp_now.h>
#include "VictronBLE.h"
// ESPNow packet structure - must match Receiver
struct __attribute__((packed)) SolarChargerPacket {
uint8_t chargeState;
float batteryVoltage; // V
float batteryCurrent; // A
float panelVoltage; // V
float panelPower; // W
uint16_t yieldToday; // Wh
float loadCurrent; // A
int8_t rssi; // BLE RSSI
char deviceName[16]; // Null-terminated, truncated
};
// Broadcast address
static const uint8_t BROADCAST_ADDR[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
static const unsigned long SEND_INTERVAL_MS = 5000; // 30 seconds
static uint32_t sendCount = 0;
static uint32_t sendFailCount = 0;
static uint32_t blePacketCount = 0;
// Cache latest packet per device
static const int MAX_DEVICES = 4;
static SolarChargerPacket cachedPackets[MAX_DEVICES];
static bool cachedValid[MAX_DEVICES] = {};
static int cachedCount = 0;
static unsigned long lastSendTime = 0;
VictronBLE victron;
// Find cached slot by device name, or allocate a new one
static int findOrAddCached(const char* name) {
for (int i = 0; i < cachedCount; i++) {
if (strncmp(cachedPackets[i].deviceName, name, sizeof(cachedPackets[i].deviceName)) == 0)
return i;
}
if (cachedCount < MAX_DEVICES) return cachedCount++;
return -1;
}
class RepeaterCallback : public VictronDeviceCallback {
public:
void onSolarChargerData(const SolarChargerData& data) override {
blePacketCount++;
// Build packet
SolarChargerPacket pkt;
pkt.chargeState = static_cast<uint8_t>(data.chargeState);
pkt.batteryVoltage = data.batteryVoltage;
pkt.batteryCurrent = data.batteryCurrent;
pkt.panelVoltage = data.panelVoltage;
pkt.panelPower = data.panelPower;
pkt.yieldToday = data.yieldToday;
pkt.loadCurrent = data.loadCurrent;
pkt.rssi = data.rssi;
memset(pkt.deviceName, 0, sizeof(pkt.deviceName));
strncpy(pkt.deviceName, data.deviceName.c_str(), sizeof(pkt.deviceName) - 1);
// Cache it
int idx = findOrAddCached(pkt.deviceName);
if (idx >= 0) {
cachedPackets[idx] = pkt;
cachedValid[idx] = true;
}
}
};
RepeaterCallback callback;
void setup() {
Serial.begin(115200);
delay(1000);
Serial.println("\n=== VictronBLE ESPNow Repeater ===\n");
// Init WiFi in STA mode (required for ESPNow)
WiFi.mode(WIFI_STA);
WiFi.disconnect();
Serial.println("MAC: " + WiFi.macAddress());
// Init ESPNow
if (esp_now_init() != ESP_OK) {
Serial.println("ERROR: ESPNow init failed!");
while (1) delay(1000);
}
// Add broadcast peer
esp_now_peer_info_t peerInfo = {};
memcpy(peerInfo.peer_addr, BROADCAST_ADDR, 6);
peerInfo.channel = 0; // Use current channel
peerInfo.encrypt = false;
if (esp_now_add_peer(&peerInfo) != ESP_OK) {
Serial.println("ERROR: Failed to add broadcast peer!");
while (1) delay(1000);
}
Serial.println("ESPNow initialized, broadcasting on all channels");
// Init VictronBLE
if (!victron.begin(5)) {
Serial.println("ERROR: Failed to initialize VictronBLE!");
Serial.println(victron.getLastError());
while (1) delay(1000);
}
victron.setDebug(false);
victron.setCallback(&callback);
// Add your devices here
victron.addDevice(
"Rainbow48V",
"E4:05:42:34:14:F3",
"0ec3adf7433dd61793ff2f3b8ad32ed8",
DEVICE_TYPE_SOLAR_CHARGER
);
victron.addDevice(
"ScottTrailer",
"e64559783cfb",
"3fa658aded4f309b9bc17a2318cb1f56",
DEVICE_TYPE_SOLAR_CHARGER
);
Serial.println("Configured " + String(victron.getDeviceCount()) + " BLE devices");
Serial.println("Packet size: " + String(sizeof(SolarChargerPacket)) + " bytes\n");
}
void loop() {
victron.loop();
// Send cached packets every 30 seconds
unsigned long now = millis();
if (now - lastSendTime >= SEND_INTERVAL_MS) {
lastSendTime = now;
int sent = 0;
for (int i = 0; i < cachedCount; i++) {
if (!cachedValid[i]) continue;
esp_err_t result = esp_now_send(BROADCAST_ADDR,
reinterpret_cast<const uint8_t*>(&cachedPackets[i]),
sizeof(SolarChargerPacket));
if (result == ESP_OK) {
sendCount++;
sent++;
Serial.printf("[ESPNow] Sent %s: %.2fV %.1fA PV:%.1fV %.0fW State:%d\n",
cachedPackets[i].deviceName,
cachedPackets[i].batteryVoltage,
cachedPackets[i].batteryCurrent,
cachedPackets[i].panelVoltage,
cachedPackets[i].panelPower,
cachedPackets[i].chargeState);
} else {
sendFailCount++;
Serial.printf("[ESPNow] FAIL sending %s (err=%d)\n",
cachedPackets[i].deviceName, result);
}
}
Serial.printf("[Stats] BLE pkts:%lu ESPNow sent:%lu fail:%lu devices:%d\n",
blePacketCount, sendCount, sendFailCount, cachedCount);
}
delay(100);
}

35
experiment/platformio.ini Normal file
View File

@@ -0,0 +1,35 @@
[env]
lib_extra_dirs = ..
[env:esp32-s3]
platform = espressif32
board = esp32-s3-devkitc-1
framework = arduino
monitor_speed = 115200
monitor_filters = esp32_exception_decoder
build_flags =
-D ARDUINO_USB_MODE=1
-D ARDUINO_USB_CDC_ON_BOOT=1
# -DCORE_DEBUG_LEVEL=3
[env:esp32-c3]
platform = espressif32
framework = arduino
board = esp32-c3-devkitm-1
board_build.mcu = esp32c3
board_build.f_cpu = 160000000L
board_build.flash_mode = dio
board_build.partitions = default.csv
monitor_speed = 115200
monitor_filters = time, default, esp32_exception_decoder
upload_speed = 921600
# NOTE: Need these two ARDUIO_USB modes to work with serial
build_flags =
-Os
-I src
-D ARDUINO_ESP32C3_DEV
-D CONFIG_IDF_TARGET_ESP32C3
-D ARDUINO_USB_MODE=1
-D ARDUINO_USB_CDC_ON_BOOT=1
lib_deps =
elapsedMillis

397
experiment/src/main.cpp Normal file
View File

@@ -0,0 +1,397 @@
/*
Scott's original test code - this does work for MPPT chargers - use it as a base
*/
#include <Arduino.h>
#include <BLEDevice.h>
#include <BLEAdvertisedDevice.h>
#include <BLEScan.h>
#include <aes/esp_aes.h> // AES decryption
typedef struct {
char charMacAddr[13]; // 12 character MAC + \0 (initialized as quoted strings below for convenience)
char charKey[33]; // 32 character keys + \0 (initialized as quoted strings below for convenience)
char comment[16]; // 16 character comment (name) for printing during setup()
byte byteMacAddr[6]; // 6 bytes for MAC - initialized by setup() from quoted strings
byte byteKey[16]; // 16 bytes for encryption key - initialized by setup() from quoted strings
char cachedDeviceName[32]; // 31 characters + \0 (filled in as we receive advertisements)
} solarController;
solarController solarControllers[] = {
// { { .charMacAddr = "e64559783cfb" }, { .charKey = "3fa658aded4f309b9bc17a2318cb1f56" }, { .comment = "ScottTrailer" } },
{ { .charMacAddr = "e405423414f3" }, { .charKey = "0ec3adf7433dd61793ff2f3b8ad32ed8" }, { .comment = "Test" } },
};
int knownSolarControllerCount = sizeof(solarControllers) / sizeof(solarControllers[0]);
BLEScan *pBLEScan;
#define AES_KEY_BITS 128
int scanTime = 1; //In seconds
byte hexCharToByte(char hexChar) {
if (hexChar >= '0' && hexChar <='9') { // 0-9
hexChar=hexChar - '0';
}
else if (hexChar >= 'a' && hexChar <= 'f') { // a-f
hexChar=hexChar - 'a' + 10;
}
else if (hexChar >= 'A' && hexChar <= 'F') { // A-F
hexChar=hexChar - 'A' + 10;
}
else {
hexChar=255;
}
return hexChar;
}
// Decryption keys and MAC addresses obtained from the VictronConnect app will be
// a string of hex digits like this:
//
// f4116784732a
// dc73cb155351cf950f9f3a958b5cd96f
//
// Split that up and turn it into an array whose equivalent definition would be like this:
//
// byte key[]={ 0xdc, 0x73, 0xcb, ... 0xd9, 0x6f };
//
void hexCharStrToByteArray(char * hexCharStr, byte * byteArray) {
bool returnVal=false;
int hexCharStrLength=strlen(hexCharStr);
// There are simpler ways of doing this without the fancy nibble-munching,
// but I do it this way so I parse things like colon-separated MAC addresses.
// BUT: be aware that this expects digits in pairs and byte values need to be
// zero-filled. i.e., a MAC address like 8:0:2b:xx:xx:xx won't come out the way
// you want it.
int byteArrayIndex=0;
bool oddByte=true;
byte hiNibble;
for (int i=0; i<hexCharStrLength; i++) {
byte nibble=hexCharToByte(hexCharStr[i]);
if (nibble!=255) {
if (oddByte) {
hiNibble=nibble;
} else {
byteArray[byteArrayIndex]=(hiNibble<<4) | nibble;
byteArrayIndex++;
}
oddByte=!oddByte;
}
}
// do we have a leftover nibble? I guess we'll assume it's a low nibble?
if (! oddByte) {
byteArray[byteArrayIndex]=hiNibble;
}
}
// Victron docs on the manufacturer data in advertisement packets can be found at:
// https://community.victronenergy.com/storage/attachments/48745-extra-manufacturer-data-2022-12-14.pdf
//
// Usage/style note: I use uint16_t in places where I need to force 16-bit unsigned integers
// instead of whatever the compiler/architecture might decide to use. I might not need to do
// the same with byte variables, but I'll do it anyway just to be at least a little consistent.
// Must use the "packed" attribute to make sure the compiler doesn't add any padding to deal with
// word alignment.
typedef struct {
uint8_t deviceState;
uint8_t errorCode;
int16_t batteryVoltage;
int16_t batteryCurrent;
uint16_t todayYield;
uint16_t inputPower;
uint8_t outputCurrentLo; // Low 8 bits of output current (in 0.1 Amp increments)
uint8_t outputCurrentHi; // High 1 bit of ourput current (must mask off unused bits)
uint8_t unused[4];
} __attribute__((packed)) victronPanelData;
typedef struct {
uint16_t vendorID; // vendor ID
uint8_t beaconType; // Should be 0x10 (Product Advertisement) for the packets we want
uint8_t unknownData1[3]; // Unknown data
uint8_t victronRecordType; // Should be 0x01 (Solar Charger) for the packets we want
uint16_t nonceDataCounter; // Nonce
uint8_t encryptKeyMatch; // Should match pre-shared encryption key byte 0
uint8_t victronEncryptedData[21]; // (31 bytes max per BLE spec - size of previous elements)
uint8_t nullPad; // extra byte because toCharArray() adds a \0 byte.
} __attribute__((packed)) victronManufacturerData;
int bestRSSI = -200;
int selectedSolarControllerIndex = -1;
time_t lastLEDBlinkTime=0;
time_t lastTick=0;
int displayRotation=3;
bool packetReceived=false;
char chargeStateNames[][6] = {
" off",
" 1?",
" 2?",
" bulk",
" abs",
"float",
" 6?",
"equal"
};
class MyAdvertisedDeviceCallbacks : public BLEAdvertisedDeviceCallbacks {
void onResult(BLEAdvertisedDevice advertisedDevice) {
#define manDataSizeMax 31 // BLE specs say no more than 31 bytes, but see comments below!
// See if we have manufacturer data and then look to see if it's coming from a Victron device.
if (advertisedDevice.haveManufacturerData() == true) {
uint8_t manCharBuf[manDataSizeMax+1];
std::string manData = advertisedDevice.getManufacturerData(); // lib code returns std::string
int manDataSize=manData.length(); // This does not include a null at the end.
Serial.printf("Manufacturer data lengt=%d\n", manData.length());
Serial.printf("Struct Size=%d\n", sizeof(victronManufacturerData));
// Limit size just in case we get a malformed packet.
if (manDataSize > manDataSizeMax) {
Serial.printf(" Note: Truncating malformed %2d byte manufacturer data to max %d byte array size\n",manDataSize,manDataSizeMax);
manDataSize=manDataSizeMax;
}
// Now copy the data from the String to a byte array. Must have the +1 so we
// don't lose the last character to the null terminator.
manData.copy((char *)manCharBuf, manDataSize + 1);
// Now let's use a struct to get to the data more cleanly.
victronManufacturerData * vicData=(victronManufacturerData *)manCharBuf;
// ignore this packet if the Vendor ID isn't Victron.
if (vicData->vendorID!=0x02e1) {
return;
}
// ignore this packet if it isn't type 0x01 (Solar Charger).
if (vicData->victronRecordType != 0x01) {
return;
}
// Get the MAC address of the device we're hearing, and then use that to look up the encryption key
// for the device.
//
// We go through a bit of trouble here to turn the String MAC address that we get from the BLE
// code ("08:00:2b:xx:xx:xx") into a byte array. I'm divided on this... I could have just (and still might!)
// left this as a string and just done a strcmp() match. This would have saved me some coding and execution time
// in exchange for having to format the MAC addresses in my solarControllers list using the embedded colons.
char receivedMacStr[18];
strcpy(receivedMacStr,advertisedDevice.getAddress().toString().c_str());
byte receivedMacByte[6];
hexCharStrToByteArray(receivedMacStr,receivedMacByte);
int solarControllerIndex=-1;
for (int trySolarControllerIndex=0; trySolarControllerIndex<knownSolarControllerCount; trySolarControllerIndex++) {
bool matchedMac=true;
for (int i=0; i<6; i++) {
if (receivedMacByte[i] != solarControllers[trySolarControllerIndex].byteMacAddr[i]) {
matchedMac=false;
break;
}
}
if (matchedMac) {
solarControllerIndex=trySolarControllerIndex;
break;
}
}
// Get the device name (if there's one in this packet).
char deviceName[32]; // 31 characters + \0
strcpy(deviceName,"(unknown device name)");
bool deviceNameFound=false;
if (advertisedDevice.haveName()) {
// This works the same whether getName() returns String or std::string.
strcpy(deviceName,advertisedDevice.getName().c_str());
// This is prone to breaking because it's not very sophisticated. It's meant to
// strip off "SmartSolar" if it's at the beginning of the name, but will do
// ugly things if someone has put it elsewhere like "My SmartSolar Charger".
if (strstr(deviceName,"SmartSolar ") == deviceName) {
strcpy(deviceName,deviceName+11);
}
deviceNameFound=true;
}
// We didn't do this test earlier because we want to print out a name - if we got one.
if (solarControllerIndex == -1) {
Serial.printf("Discarding packet from unconfigured Victron SmartSolar %s at MAC %s\n",deviceName,receivedMacStr);
return;
}
// If we found a device name, cache it for later display.
if (deviceNameFound) {
strcpy(solarControllers[solarControllerIndex].cachedDeviceName,deviceName);
}
// The manufacturer data from Victron contains a byte that's supposed to match the first byte
// of the device's encryption key. If they don't match, when we don't have the right key for
// this device and we just have to throw the data away. ALTERNATELY, we can go ahead and decrypt
// the data - incorrectly - and use the crazy values to indicate that we have a problem.
if (vicData->encryptKeyMatch != solarControllers[solarControllerIndex].byteKey[0]) {
Serial.printf("Encryption key mismatch for %s at MAC %s\n",
solarControllers[solarControllerIndex].cachedDeviceName,receivedMacStr);
return;
}
// Get the signal strength (RSSI) of the beacon.
int RSSI=advertisedDevice.getRSSI();
// If we're showing our data on our integrated graphics hardware,
// then show only the SmartSolar device with the strongest signal.
// I debated on whether to do this with "#if defined..." for conditional compilation
// or I should do this with a boolean "using graphics hardware" variable and a regular
// "if". I decided on #if, but I might change my mind later.
// Get the beacon's RSSI (signal strength). If it's stronger than other beacons we've received,
// then lock on to this SmartSolar and don't display beacons from others anymore.
if (selectedSolarControllerIndex==solarControllerIndex) {
if (RSSI > bestRSSI) {
bestRSSI=RSSI;
}
} else {
if (RSSI > bestRSSI) {
selectedSolarControllerIndex=solarControllerIndex;
Serial.printf("Selected Victon SmartSolar %s at MAC %s as preferred device based on RSSI %d\n",
solarControllers[solarControllerIndex].cachedDeviceName,receivedMacStr,RSSI);
} else {
Serial.printf("Discarding RSSI-based non-selected Victon SmartSolar %s at MAC %s\n",
solarControllers[solarControllerIndex].cachedDeviceName,receivedMacStr);
return;
}
}
// Now that the packet received has met all the criteria for being displayed,
// let's decrypt and decode the manufacturer data.
byte inputData[16];
byte outputData[16]={0};
victronPanelData * victronData = (victronPanelData *) outputData;
// The number of encrypted bytes is given by the number of bytes in the manufacturer
// data as a while minus the number of bytes (10) in the header part of the data.
int encrDataSize=manDataSize-10;
for (int i=0; i<encrDataSize; i++) {
inputData[i]=vicData->victronEncryptedData[i]; // copy for our decrypt below while I figure this out.
}
esp_aes_context ctx;
esp_aes_init(&ctx);
auto status = esp_aes_setkey(&ctx, solarControllers[solarControllerIndex].byteKey, AES_KEY_BITS);
if (status != 0) {
Serial.printf(" Error during esp_aes_setkey operation (%i).\n",status);
esp_aes_free(&ctx);
return;
}
byte data_counter_lsb=(vicData->nonceDataCounter) & 0xff;
byte data_counter_msb=((vicData->nonceDataCounter) >> 8) & 0xff;
u_int8_t nonce_counter[16] = {data_counter_lsb, data_counter_msb, 0};
u_int8_t stream_block[16] = {0};
size_t nonce_offset=0;
status = esp_aes_crypt_ctr(&ctx, encrDataSize, &nonce_offset, nonce_counter, stream_block, inputData, outputData);
if (status != 0) {
Serial.printf("Error during esp_aes_crypt_ctr operation (%i).",status);
esp_aes_free(&ctx);
return;
}
esp_aes_free(&ctx);
byte deviceState=victronData->deviceState; // this is really more like "Charger State"
byte errorCode=victronData->errorCode;
float batteryVoltage=float(victronData->batteryVoltage)*0.01;
float batteryCurrent=float(victronData->batteryCurrent)*0.1;
float todayYield=float(victronData->todayYield)*0.01*1000;
uint16_t inputPower=victronData->inputPower; // this is in watts; no conversion needed
// Getting the output current takes some magic.
int integerOutputCurrent=((victronData->outputCurrentHi & 0x01)<<9) | victronData->outputCurrentLo;
float outputCurrent=float(integerOutputCurrent)*0.1;
// I don't know why, but every so often we'll get half-corrupted data from the Victron.
// Towards the goal of filtering out this noise, I've found that I've rarely (if ever) seen
// corrupted data when the 'unused' bits of the outputCurrent MSB equal 0xfe. We'll use this
// as a litmus test here.
byte unusedBits=victronData->outputCurrentHi & 0xfe;
if (unusedBits != 0xfe) {
return;
}
// The Victron docs say Device State but it's really a Charger State.
char chargeStateName[6];
sprintf(chargeStateName,"%4d?",deviceState);
if (deviceState >=0 && deviceState<=7) {
strcpy(chargeStateName,chargeStateNames[deviceState]);
}
Serial.printf("%-31s Battery: %6.2f Volts %6.2f Amps Solar: %6d Watts Yield: %4.0f Wh Load: %5.1f Amps Charger: %-13s Err: %2d RSSI: %d\n",
solarControllers[solarControllerIndex].cachedDeviceName,
batteryVoltage, batteryCurrent,
inputPower, todayYield,
outputCurrent, chargeStateName, errorCode, RSSI
);
char screenDeviceName[14]; // 13 characters plus /0
strncpy(screenDeviceName,solarControllers[solarControllerIndex].cachedDeviceName,13);
screenDeviceName[13]='\0'; // make sure we have a null byte at the end.
/*
sh3dNbDisplay.line1 = String("Name: ") + String(screenDeviceName);
sh3dNbDisplay.line2 = String("Battery: ") + String(batteryVoltage) + String("V");
sh3dNbDisplay.line3 = String("Charge: ") + String(inputPower) + String("W ") + String(todayYield) + String("Wh");
sh3dNb.setMessage(sh3dNb.iso8601());
sh3dNbDisplay.update();
*/
packetReceived=true;
}
}
};
void setup() {
Serial.begin(115200);
Serial.println("Basic test");
// VICTRON BLUETOOTH
for (int i = 0; i < knownSolarControllerCount; i++) {
hexCharStrToByteArray(solarControllers[i].charMacAddr, solarControllers[i].byteMacAddr);
hexCharStrToByteArray(solarControllers[i].charKey, solarControllers[i].byteKey);
strcpy(solarControllers[i].cachedDeviceName, "(unknown)");
}
for (int i = 0; i < knownSolarControllerCount; i++) {
Serial.printf(" %-16s", solarControllers[i].comment);
Serial.printf(" Mac: ");
for (int j = 0; j < 6; j++) {
Serial.printf(" %2.2x", solarControllers[i].byteMacAddr[j]);
}
Serial.printf(" Key: ");
for (int j = 0; j < 16; j++) {
Serial.printf("%2.2x", solarControllers[i].byteKey[j]);
}
}
BLEDevice::init("");
pBLEScan = BLEDevice::getScan(); //create new scan
pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks());
pBLEScan->setActiveScan(true); //active scan uses more power, but gets results faster
pBLEScan->setInterval(100);
pBLEScan->setWindow(99); // less or equal setInterval value
}
void loop() {
Serial.println("tick");
BLEScanResults foundDevices = pBLEScan->start(scanTime, false);
pBLEScan->clearResults(); // delete results fromBLEScan buffer to release memory
delay(100);
}

View File

@@ -1,6 +1,6 @@
{
"name": "VictronBLE",
"version": "0.1.1",
"name": "victronble",
"version": "0.3.1",
"description": "ESP32 library for reading Victron Energy device data via Bluetooth Low Energy (BLE) advertisements. Supports SmartSolar MPPT, SmartShunt, BMV, MultiPlus, Orion and other Victron devices.",
"keywords": "victron, ble, bluetooth, solar, mppt, battery, smartshunt, smartsolar, bmv, inverter, multiplus, esp32, iot, energy, monitoring",
"repository": {
@@ -26,6 +26,16 @@
"name": "MultiDevice",
"base": "examples/MultiDevice",
"files": ["src/main.cpp"]
},
{
"name": "Logger",
"base": "examples/Logger",
"files": ["src/main.cpp"]
},
{
"name": "Repeater",
"base": "examples/Repeater",
"files": ["src/main.cpp"]
}
],
"export": {

View File

@@ -1,5 +1,5 @@
name=VictronBLE
version=0.1.1
version=0.3.1
author=Scott Penrose
maintainer=Scott Penrose <scottp@dd.com.au>
sentence=ESP32 library for reading Victron Energy device data via BLE for any ESP32

View File

@@ -1,7 +1,7 @@
/**
* VictronBLE - ESP32 library for Victron Energy BLE devices
* Implementation file
*
*
* Copyright (c) 2025 Scott Penrose
* License: MIT
*/
@@ -9,9 +9,9 @@
#include "VictronBLE.h"
// Constructor
VictronBLE::VictronBLE()
: pBLEScan(nullptr), callback(nullptr), debugEnabled(false),
scanDuration(5), initialized(false) {
VictronBLE::VictronBLE()
: pBLEScan(nullptr), scanCallback(nullptr), callback(nullptr),
debugEnabled(false), scanDuration(5), initialized(false) {
}
// Destructor
@@ -20,39 +20,43 @@ VictronBLE::~VictronBLE() {
delete pair.second;
}
devices.clear();
if (pBLEScan) {
pBLEScan->stop();
}
delete scanCallback;
}
// Initialize BLE
bool VictronBLE::begin(uint32_t scanDuration) {
if (initialized) {
debugPrint("VictronBLE already initialized");
if (debugEnabled) debugPrint("VictronBLE already initialized");
return true;
}
this->scanDuration = scanDuration;
debugPrint("Initializing VictronBLE...");
if (debugEnabled) debugPrint("Initializing VictronBLE...");
BLEDevice::init("VictronBLE");
pBLEScan = BLEDevice::getScan();
if (!pBLEScan) {
lastError = "Failed to create BLE scanner";
if (debugEnabled) debugPrint(lastError);
return false;
}
pBLEScan->setAdvertisedDeviceCallbacks(new VictronBLEAdvertisedDeviceCallbacks(this), true);
scanCallback = new VictronBLEAdvertisedDeviceCallbacks(this);
pBLEScan->setAdvertisedDeviceCallbacks(scanCallback, true);
pBLEScan->setActiveScan(false); // Passive scan - lower power
pBLEScan->setInterval(100);
pBLEScan->setWindow(99);
initialized = true;
debugPrint("VictronBLE initialized successfully");
if (debugEnabled) debugPrint("VictronBLE initialized successfully");
return true;
}
@@ -60,62 +64,69 @@ bool VictronBLE::begin(uint32_t scanDuration) {
bool VictronBLE::addDevice(const VictronDeviceConfig& config) {
if (config.macAddress.length() == 0) {
lastError = "MAC address cannot be empty";
if (debugEnabled) debugPrint(lastError);
return false;
}
if (config.encryptionKey.length() != 32) {
lastError = "Encryption key must be 32 hex characters";
if (debugEnabled) debugPrint(lastError);
return false;
}
String normalizedMAC = normalizeMAC(config.macAddress);
// Check if device already exists
if (devices.find(normalizedMAC) != devices.end()) {
debugPrint("Device " + normalizedMAC + " already exists, updating config");
if (debugEnabled) debugPrint("Device " + normalizedMAC + " already exists, updating config");
delete devices[normalizedMAC];
}
DeviceInfo* info = new DeviceInfo();
info->config = config;
info->config.macAddress = normalizedMAC;
// Convert encryption key from hex string to bytes
if (!hexStringToBytes(config.encryptionKey, info->encryptionKeyBytes, 16)) {
lastError = "Invalid encryption key format";
if (debugEnabled) debugPrint(lastError);
delete info;
return false;
}
// Create appropriate data structure based on device type
info->data = createDeviceData(config.expectedType);
if (info->data) {
info->data->macAddress = normalizedMAC;
info->data->deviceName = config.name;
}
devices[normalizedMAC] = info;
debugPrint("Added device: " + config.name + " (" + normalizedMAC + ")");
if (debugEnabled) {
debugPrint("Added device: " + config.name + " (MAC: " + normalizedMAC + ")");
debugPrint(" Original MAC input: " + config.macAddress);
debugPrint(" Stored normalized: " + normalizedMAC);
}
return true;
}
bool VictronBLE::addDevice(String name, String macAddress, String encryptionKey,
bool VictronBLE::addDevice(const String& name, const String& macAddress, const String& encryptionKey,
VictronDeviceType expectedType) {
VictronDeviceConfig config(name, macAddress, encryptionKey, expectedType);
return addDevice(config);
}
// Remove a device
void VictronBLE::removeDevice(String macAddress) {
void VictronBLE::removeDevice(const String& macAddress) {
String normalizedMAC = normalizeMAC(macAddress);
auto it = devices.find(normalizedMAC);
if (it != devices.end()) {
delete it->second;
devices.erase(it);
debugPrint("Removed device: " + normalizedMAC);
if (debugEnabled) debugPrint("Removed device: " + normalizedMAC);
}
}
@@ -124,7 +135,7 @@ void VictronBLE::loop() {
if (!initialized) {
return;
}
// Start a scan
BLEScanResults scanResults = pBLEScan->start(scanDuration, false);
pBLEScan->clearResults();
@@ -138,38 +149,61 @@ void VictronBLEAdvertisedDeviceCallbacks::onResult(BLEAdvertisedDevice advertise
}
// Process advertised device
void VictronBLE::processDevice(BLEAdvertisedDevice advertisedDevice) {
void VictronBLE::processDevice(BLEAdvertisedDevice& advertisedDevice) {
// Get MAC address from the advertised device
String mac = macAddressToString(advertisedDevice.getAddress());
String normalizedMAC = normalizeMAC(mac);
if (debugEnabled) {
debugPrint("Raw MAC: " + mac + " -> Normalized: " + normalizedMAC);
}
// Parse manufacturer data into local struct
victronManufacturerData mfgData;
memset(&mfgData, 0, sizeof(mfgData));
if (advertisedDevice.haveManufacturerData()) {
std::string rawMfgData = advertisedDevice.getManufacturerData();
if (debugEnabled) debugPrint("Getting manufacturer data: Size=" + String(rawMfgData.length()));
rawMfgData.copy(reinterpret_cast<char*>(&mfgData),
(rawMfgData.length() > sizeof(mfgData) ? sizeof(mfgData) : rawMfgData.length()));
}
// Debug: Log all discovered BLE devices
if (debugEnabled) {
String debugMsg = "BLE Device: " + mac;
debugMsg += ", RSSI: " + String(advertisedDevice.getRSSI()) + " dBm";
if (advertisedDevice.haveName())
debugMsg += ", Name: " + String(advertisedDevice.getName().c_str());
debugMsg += ", Mfg ID: 0x" + String(mfgData.vendorID, HEX);
if (mfgData.vendorID == VICTRON_MANUFACTURER_ID) {
debugMsg += " (Victron)";
}
debugPrint(debugMsg);
}
// Check if this is one of our configured devices
auto it = devices.find(normalizedMAC);
if (it == devices.end()) {
if (debugEnabled && mfgData.vendorID == VICTRON_MANUFACTURER_ID) {
debugPrint("Found unmonitored Victron Device: " + normalizedMAC);
}
return; // Not a device we're monitoring
}
DeviceInfo* deviceInfo = it->second;
// Check if device has manufacturer data
if (!advertisedDevice.haveManufacturerData()) {
return;
}
std::string mfgData = advertisedDevice.getManufacturerData();
if (mfgData.length() < 2) {
return;
}
// Check if it's Victron (manufacturer ID 0x02E1)
uint16_t mfgId = (uint8_t)mfgData[1] << 8 | (uint8_t)mfgData[0];
if (mfgId != VICTRON_MANUFACTURER_ID) {
if (mfgData.vendorID != VICTRON_MANUFACTURER_ID) {
if (debugEnabled) debugPrint("Skipping non VICTRON");
return;
}
debugPrint("Processing data from: " + deviceInfo->config.name);
if (debugEnabled) debugPrint("Processing data from: " + deviceInfo->config.name);
// Parse the advertisement
if (parseAdvertisement((const uint8_t*)mfgData.data(), mfgData.length(), normalizedMAC)) {
if (parseAdvertisement(deviceInfo, mfgData)) {
// Update RSSI
if (deviceInfo->data) {
deviceInfo->data->rssi = advertisedDevice.getRSSI();
@@ -179,115 +213,97 @@ void VictronBLE::processDevice(BLEAdvertisedDevice advertisedDevice) {
}
// Parse advertisement data
bool VictronBLE::parseAdvertisement(const uint8_t* manufacturerData, size_t len,
const String& macAddress) {
auto it = devices.find(macAddress);
if (it == devices.end()) {
return false;
}
DeviceInfo* deviceInfo = it->second;
if (len < 6) {
debugPrint("Manufacturer data too short");
return false;
}
// Structure: [MfgID(2)] [DeviceType(1)] [IV(2)] [EncryptedData(n)]
uint8_t deviceType = manufacturerData[2];
// Extract IV (initialization vector) - bytes 3-4, little-endian
uint8_t iv[16] = {0};
iv[0] = manufacturerData[3];
iv[1] = manufacturerData[4];
// Rest of IV is zero-padded
// Encrypted data starts at byte 5
const uint8_t* encryptedData = manufacturerData + 5;
size_t encryptedLen = len - 5;
bool VictronBLE::parseAdvertisement(DeviceInfo* deviceInfo, const victronManufacturerData& mfgData) {
if (debugEnabled) {
debugPrintHex("Encrypted data", encryptedData, encryptedLen);
debugPrintHex("IV", iv, 16);
debugPrint("Vendor ID: 0x" + String(mfgData.vendorID, HEX));
debugPrint("Beacon Type: 0x" + String(mfgData.beaconType, HEX));
debugPrint("Record Type: 0x" + String(mfgData.victronRecordType, HEX));
debugPrint("Nonce: 0x" + String(mfgData.nonceDataCounter, HEX));
}
// Build IV (initialization vector) from nonce
// IV is 16 bytes: nonce (2 bytes little-endian) + zeros (14 bytes)
uint8_t iv[16] = {0};
iv[0] = mfgData.nonceDataCounter & 0xFF; // Low byte
iv[1] = (mfgData.nonceDataCounter >> 8) & 0xFF; // High byte
// Remaining bytes stay zero
// Decrypt the data
uint8_t decrypted[32]; // Max expected size
if (!decryptAdvertisement(encryptedData, encryptedLen,
const size_t encryptedLen = sizeof(mfgData.victronEncryptedData);
uint8_t decrypted[encryptedLen];
if (!decryptAdvertisement(mfgData.victronEncryptedData,
encryptedLen,
deviceInfo->encryptionKeyBytes, iv, decrypted)) {
lastError = "Decryption failed";
if (debugEnabled) debugPrint(lastError);
return false;
}
if (debugEnabled) {
debugPrintHex("Decrypted data", decrypted, encryptedLen);
}
// Parse based on device type
bool parseOk = false;
switch (deviceType) {
switch (mfgData.victronRecordType) {
case DEVICE_TYPE_SOLAR_CHARGER:
if (deviceInfo->data && deviceInfo->data->deviceType == DEVICE_TYPE_SOLAR_CHARGER) {
parseOk = parseSolarCharger(decrypted, encryptedLen,
*(SolarChargerData*)deviceInfo->data);
parseOk = parseSolarCharger(decrypted, encryptedLen,
*static_cast<SolarChargerData*>(deviceInfo->data));
}
break;
case DEVICE_TYPE_BATTERY_MONITOR:
if (deviceInfo->data && deviceInfo->data->deviceType == DEVICE_TYPE_BATTERY_MONITOR) {
parseOk = parseBatteryMonitor(decrypted, encryptedLen,
*(BatteryMonitorData*)deviceInfo->data);
*static_cast<BatteryMonitorData*>(deviceInfo->data));
}
break;
case DEVICE_TYPE_INVERTER:
case DEVICE_TYPE_INVERTER_RS:
case DEVICE_TYPE_MULTI_RS:
case DEVICE_TYPE_VE_BUS:
if (deviceInfo->data && deviceInfo->data->deviceType == DEVICE_TYPE_INVERTER) {
parseOk = parseInverter(decrypted, encryptedLen,
*(InverterData*)deviceInfo->data);
*static_cast<InverterData*>(deviceInfo->data));
}
break;
case DEVICE_TYPE_DCDC_CONVERTER:
if (deviceInfo->data && deviceInfo->data->deviceType == DEVICE_TYPE_DCDC_CONVERTER) {
parseOk = parseDCDCConverter(decrypted, encryptedLen,
*(DCDCConverterData*)deviceInfo->data);
*static_cast<DCDCConverterData*>(deviceInfo->data));
}
break;
default:
debugPrint("Unknown device type: 0x" + String(deviceType, HEX));
if (debugEnabled) debugPrint("Unknown device type: 0x" + String(mfgData.victronRecordType, HEX));
return false;
}
if (parseOk && deviceInfo->data) {
deviceInfo->data->dataValid = true;
// Call appropriate callback
if (callback) {
switch (deviceType) {
switch (mfgData.victronRecordType) {
case DEVICE_TYPE_SOLAR_CHARGER:
callback->onSolarChargerData(*(SolarChargerData*)deviceInfo->data);
callback->onSolarChargerData(*static_cast<SolarChargerData*>(deviceInfo->data));
break;
case DEVICE_TYPE_BATTERY_MONITOR:
callback->onBatteryMonitorData(*(BatteryMonitorData*)deviceInfo->data);
callback->onBatteryMonitorData(*static_cast<BatteryMonitorData*>(deviceInfo->data));
break;
case DEVICE_TYPE_INVERTER:
case DEVICE_TYPE_INVERTER_RS:
case DEVICE_TYPE_MULTI_RS:
case DEVICE_TYPE_VE_BUS:
callback->onInverterData(*(InverterData*)deviceInfo->data);
callback->onInverterData(*static_cast<InverterData*>(deviceInfo->data));
break;
case DEVICE_TYPE_DCDC_CONVERTER:
callback->onDCDCConverterData(*(DCDCConverterData*)deviceInfo->data);
callback->onDCDCConverterData(*static_cast<DCDCConverterData*>(deviceInfo->data));
break;
}
}
}
return parseOk;
}
@@ -297,244 +313,257 @@ bool VictronBLE::decryptAdvertisement(const uint8_t* encrypted, size_t encLen,
uint8_t* decrypted) {
mbedtls_aes_context aes;
mbedtls_aes_init(&aes);
// Set encryption key
int ret = mbedtls_aes_setkey_enc(&aes, key, 128);
if (ret != 0) {
mbedtls_aes_free(&aes);
return false;
}
// AES-CTR decryption
size_t nc_off = 0;
uint8_t nonce_counter[16];
uint8_t stream_block[16];
memcpy(nonce_counter, iv, 16);
memset(stream_block, 0, 16);
ret = mbedtls_aes_crypt_ctr(&aes, encLen, &nc_off, nonce_counter,
stream_block, encrypted, decrypted);
mbedtls_aes_free(&aes);
return (ret == 0);
}
// Parse Solar Charger data
bool VictronBLE::parseSolarCharger(const uint8_t* data, size_t len, SolarChargerData& result) {
if (len < 12) {
debugPrint("Solar charger data too short");
if (len < sizeof(victronSolarChargerPayload)) {
if (debugEnabled) debugPrint("Solar charger data too short: " + String(len) + " bytes");
return false;
}
// Byte 0: Charge state
result.chargeState = (SolarChargerState)data[0];
// Bytes 1-2: Battery voltage (10 mV units)
uint16_t vBat = data[1] | (data[2] << 8);
result.batteryVoltage = vBat * 0.01f;
// Bytes 3-4: Battery current (10 mA units, signed)
int16_t iBat = (int16_t)(data[3] | (data[4] << 8));
result.batteryCurrent = iBat * 0.01f;
// Bytes 5-6: Yield today (10 Wh units)
uint16_t yield = data[5] | (data[6] << 8);
result.yieldToday = yield * 10;
// Bytes 7-8: PV power (1 W units)
uint16_t pvPower = data[7] | (data[8] << 8);
result.panelPower = pvPower;
// Bytes 9-10: Load current (10 mA units)
uint16_t iLoad = data[9] | (data[10] << 8);
if (iLoad != 0xFFFF) { // 0xFFFF means no load output
result.loadCurrent = iLoad * 0.01f;
const auto* payload = reinterpret_cast<const victronSolarChargerPayload*>(data);
// Parse charge state
result.chargeState = static_cast<SolarChargerState>(payload->deviceState);
// Parse battery voltage (10 mV units -> volts)
result.batteryVoltage = payload->batteryVoltage * 0.01f;
// Parse battery current (10 mA units, signed -> amps)
result.batteryCurrent = payload->batteryCurrent * 0.01f;
// Parse yield today (10 Wh units -> Wh)
result.yieldToday = payload->yieldToday * 10;
// Parse PV power (1 W units)
result.panelPower = payload->inputPower;
// Parse load current (10 mA units -> amps, 0xFFFF = no load)
if (payload->loadCurrent != 0xFFFF) {
result.loadCurrent = payload->loadCurrent * 0.01f;
} else {
result.loadCurrent = 0;
}
// Calculate PV voltage from power and current (if current > 0)
if (result.batteryCurrent > 0.1f) {
result.panelVoltage = result.panelPower / result.batteryCurrent;
} else {
result.panelVoltage = 0;
}
debugPrint("Solar Charger: " + String(result.batteryVoltage, 2) + "V, " +
String(result.batteryCurrent, 2) + "A, " +
String(result.panelPower) + "W, State: " + String(result.chargeState));
if (debugEnabled) {
debugPrint("Solar Charger: " + String(result.batteryVoltage, 2) + "V, " +
String(result.batteryCurrent, 2) + "A, " +
String(result.panelPower) + "W, State: " + String(result.chargeState));
}
return true;
}
// Parse Battery Monitor data
// Parse Battery Monitor data
bool VictronBLE::parseBatteryMonitor(const uint8_t* data, size_t len, BatteryMonitorData& result) {
if (len < 15) {
debugPrint("Battery monitor data too short");
if (len < sizeof(victronBatteryMonitorPayload)) {
if (debugEnabled) debugPrint("Battery monitor data too short: " + String(len) + " bytes");
return false;
}
// Bytes 0-1: Remaining time (1 minute units)
uint16_t timeRemaining = data[0] | (data[1] << 8);
result.remainingMinutes = timeRemaining;
// Bytes 2-3: Battery voltage (10 mV units)
uint16_t vBat = data[2] | (data[3] << 8);
result.voltage = vBat * 0.01f;
// Byte 4: Alarms
uint8_t alarms = data[4];
result.alarmLowVoltage = (alarms & 0x01) != 0;
result.alarmHighVoltage = (alarms & 0x02) != 0;
result.alarmLowSOC = (alarms & 0x04) != 0;
result.alarmLowTemperature = (alarms & 0x10) != 0;
result.alarmHighTemperature = (alarms & 0x20) != 0;
// Bytes 5-6: Aux voltage/temperature (10 mV or 0.01K units)
uint16_t aux = data[5] | (data[6] << 8);
if (aux < 3000) { // If < 30V, it's voltage
result.auxVoltage = aux * 0.01f;
const auto* payload = reinterpret_cast<const victronBatteryMonitorPayload*>(data);
// Parse remaining time (1 minute units)
result.remainingMinutes = payload->remainingMins;
// Parse battery voltage (10 mV units -> volts)
result.voltage = payload->batteryVoltage * 0.01f;
// Parse alarm bits
result.alarmLowVoltage = (payload->alarms & 0x01) != 0;
result.alarmHighVoltage = (payload->alarms & 0x02) != 0;
result.alarmLowSOC = (payload->alarms & 0x04) != 0;
result.alarmLowTemperature = (payload->alarms & 0x10) != 0;
result.alarmHighTemperature = (payload->alarms & 0x20) != 0;
// Parse aux data: voltage (10 mV units) or temperature (0.01K units)
if (payload->auxData < 3000) { // If < 30V, it's voltage
result.auxVoltage = payload->auxData * 0.01f;
result.temperature = 0;
} else { // Otherwise temperature in 0.01 Kelvin
result.temperature = (aux * 0.01f) - 273.15f;
result.temperature = (payload->auxData * 0.01f) - 273.15f;
result.auxVoltage = 0;
}
// Bytes 7-9: Battery current (22-bit signed, 1 mA units)
int32_t current = data[7] | (data[8] << 8) | ((data[9] & 0x3F) << 16);
if (current & 0x200000) { // Sign extend if negative
// Parse battery current (22-bit signed, 1 mA units)
int32_t current = payload->currentLow |
(payload->currentMid << 8) |
((payload->currentHigh_consumedLow & 0x3F) << 16);
// Sign extend from 22 bits to 32 bits
if (current & 0x200000) {
current |= 0xFFC00000;
}
result.current = current * 0.001f;
// Bytes 9-11: Consumed Ah (18-bit signed, 10 mAh units)
int32_t consumedAh = ((data[9] & 0xC0) >> 6) | (data[10] << 2) | ((data[11] & 0xFF) << 10);
if (consumedAh & 0x20000) { // Sign extend
result.current = current * 0.001f; // Convert mA to A
// Parse consumed Ah (18-bit signed, 10 mAh units)
int32_t consumedAh = ((payload->currentHigh_consumedLow & 0xC0) >> 6) |
(payload->consumedMid << 2) |
(payload->consumedHigh << 10);
// Sign extend from 18 bits to 32 bits
if (consumedAh & 0x20000) {
consumedAh |= 0xFFFC0000;
}
result.consumedAh = consumedAh * 0.01f;
// Bytes 12-13: SOC (10 = 1.0%)
uint16_t soc = data[12] | ((data[13] & 0x03) << 8);
result.soc = soc * 0.1f;
debugPrint("Battery Monitor: " + String(result.voltage, 2) + "V, " +
String(result.current, 2) + "A, SOC: " + String(result.soc, 1) + "%");
result.consumedAh = consumedAh * 0.01f; // Convert 10mAh to Ah
// Parse SOC (10-bit value, 10 = 1.0%)
result.soc = (payload->soc & 0x3FF) * 0.1f;
if (debugEnabled) {
debugPrint("Battery Monitor: " + String(result.voltage, 2) + "V, " +
String(result.current, 2) + "A, SOC: " + String(result.soc, 1) + "%");
}
return true;
}
// Parse Inverter data
bool VictronBLE::parseInverter(const uint8_t* data, size_t len, InverterData& result) {
if (len < 10) {
debugPrint("Inverter data too short");
if (len < sizeof(victronInverterPayload)) {
if (debugEnabled) debugPrint("Inverter data too short: " + String(len) + " bytes");
return false;
}
// Byte 0: Device state
result.state = data[0];
// Bytes 1-2: Battery voltage (10 mV units)
uint16_t vBat = data[1] | (data[2] << 8);
result.batteryVoltage = vBat * 0.01f;
// Bytes 3-4: Battery current (10 mA units, signed)
int16_t iBat = (int16_t)(data[3] | (data[4] << 8));
result.batteryCurrent = iBat * 0.01f;
// Bytes 5-7: AC Power (1 W units, signed 24-bit)
int32_t acPower = data[5] | (data[6] << 8) | (data[7] << 16);
if (acPower & 0x800000) { // Sign extend
const auto* payload = reinterpret_cast<const victronInverterPayload*>(data);
// Parse device state
result.state = payload->deviceState;
// Parse battery voltage (10 mV units -> volts)
result.batteryVoltage = payload->batteryVoltage * 0.01f;
// Parse battery current (10 mA units, signed -> amps)
result.batteryCurrent = payload->batteryCurrent * 0.01f;
// Parse AC Power (signed 24-bit, 1 W units)
int32_t acPower = payload->acPowerLow |
(payload->acPowerMid << 8) |
(payload->acPowerHigh << 16);
// Sign extend from 24 bits to 32 bits
if (acPower & 0x800000) {
acPower |= 0xFF000000;
}
result.acPower = acPower;
// Byte 8: Alarms
uint8_t alarms = data[8];
result.alarmLowVoltage = (alarms & 0x01) != 0;
result.alarmHighVoltage = (alarms & 0x02) != 0;
result.alarmHighTemperature = (alarms & 0x04) != 0;
result.alarmOverload = (alarms & 0x08) != 0;
debugPrint("Inverter: " + String(result.batteryVoltage, 2) + "V, " +
String(result.acPower) + "W, State: " + String(result.state));
// Parse alarm bits
result.alarmLowVoltage = (payload->alarms & 0x01) != 0;
result.alarmHighVoltage = (payload->alarms & 0x02) != 0;
result.alarmHighTemperature = (payload->alarms & 0x04) != 0;
result.alarmOverload = (payload->alarms & 0x08) != 0;
if (debugEnabled) {
debugPrint("Inverter: " + String(result.batteryVoltage, 2) + "V, " +
String(result.acPower) + "W, State: " + String(result.state));
}
return true;
}
// Parse DC-DC Converter data
bool VictronBLE::parseDCDCConverter(const uint8_t* data, size_t len, DCDCConverterData& result) {
if (len < 10) {
debugPrint("DC-DC converter data too short");
if (len < sizeof(victronDCDCConverterPayload)) {
if (debugEnabled) debugPrint("DC-DC converter data too short: " + String(len) + " bytes");
return false;
}
// Byte 0: Charge state
result.chargeState = data[0];
// Bytes 1-2: Input voltage (10 mV units)
uint16_t vIn = data[1] | (data[2] << 8);
result.inputVoltage = vIn * 0.01f;
// Bytes 3-4: Output voltage (10 mV units)
uint16_t vOut = data[3] | (data[4] << 8);
result.outputVoltage = vOut * 0.01f;
// Bytes 5-6: Output current (10 mA units)
uint16_t iOut = data[5] | (data[6] << 8);
result.outputCurrent = iOut * 0.01f;
// Byte 7: Error code
result.errorCode = data[7];
debugPrint("DC-DC Converter: In=" + String(result.inputVoltage, 2) + "V, Out=" +
String(result.outputVoltage, 2) + "V, " + String(result.outputCurrent, 2) + "A");
const auto* payload = reinterpret_cast<const victronDCDCConverterPayload*>(data);
// Parse charge state
result.chargeState = payload->chargeState;
// Parse error code
result.errorCode = payload->errorCode;
// Parse input voltage (10 mV units -> volts)
result.inputVoltage = payload->inputVoltage * 0.01f;
// Parse output voltage (10 mV units -> volts)
result.outputVoltage = payload->outputVoltage * 0.01f;
// Parse output current (10 mA units -> amps)
result.outputCurrent = payload->outputCurrent * 0.01f;
if (debugEnabled) {
debugPrint("DC-DC Converter: In=" + String(result.inputVoltage, 2) + "V, Out=" +
String(result.outputVoltage, 2) + "V, " + String(result.outputCurrent, 2) + "A");
}
return true;
}
// Get data methods
bool VictronBLE::getSolarChargerData(String macAddress, SolarChargerData& data) {
bool VictronBLE::getSolarChargerData(const String& macAddress, SolarChargerData& data) {
String normalizedMAC = normalizeMAC(macAddress);
auto it = devices.find(normalizedMAC);
if (it != devices.end() && it->second->data &&
if (it != devices.end() && it->second->data &&
it->second->data->deviceType == DEVICE_TYPE_SOLAR_CHARGER) {
data = *(SolarChargerData*)it->second->data;
data = *static_cast<SolarChargerData*>(it->second->data);
return data.dataValid;
}
return false;
}
bool VictronBLE::getBatteryMonitorData(String macAddress, BatteryMonitorData& data) {
bool VictronBLE::getBatteryMonitorData(const String& macAddress, BatteryMonitorData& data) {
String normalizedMAC = normalizeMAC(macAddress);
auto it = devices.find(normalizedMAC);
if (it != devices.end() && it->second->data &&
it->second->data->deviceType == DEVICE_TYPE_BATTERY_MONITOR) {
data = *(BatteryMonitorData*)it->second->data;
data = *static_cast<BatteryMonitorData*>(it->second->data);
return data.dataValid;
}
return false;
}
bool VictronBLE::getInverterData(String macAddress, InverterData& data) {
bool VictronBLE::getInverterData(const String& macAddress, InverterData& data) {
String normalizedMAC = normalizeMAC(macAddress);
auto it = devices.find(normalizedMAC);
if (it != devices.end() && it->second->data &&
it->second->data->deviceType == DEVICE_TYPE_INVERTER) {
data = *(InverterData*)it->second->data;
data = *static_cast<InverterData*>(it->second->data);
return data.dataValid;
}
return false;
}
bool VictronBLE::getDCDCConverterData(String macAddress, DCDCConverterData& data) {
bool VictronBLE::getDCDCConverterData(const String& macAddress, DCDCConverterData& data) {
String normalizedMAC = normalizeMAC(macAddress);
auto it = devices.find(normalizedMAC);
if (it != devices.end() && it->second->data &&
it->second->data->deviceType == DEVICE_TYPE_DCDC_CONVERTER) {
data = *(DCDCConverterData*)it->second->data;
data = *static_cast<DCDCConverterData*>(it->second->data);
return data.dataValid;
}
return false;
@@ -543,13 +572,13 @@ bool VictronBLE::getDCDCConverterData(String macAddress, DCDCConverterData& data
// Get devices by type
std::vector<String> VictronBLE::getDevicesByType(VictronDeviceType type) {
std::vector<String> result;
for (const auto& pair : devices) {
if (pair.second->data && pair.second->data->deviceType == type) {
result.push_back(pair.first);
}
}
return result;
}
@@ -577,7 +606,7 @@ bool VictronBLE::hexStringToBytes(const String& hex, uint8_t* bytes, size_t len)
if (hex.length() != len * 2) {
return false;
}
for (size_t i = 0; i < len; i++) {
String byteStr = hex.substring(i * 2, i * 2 + 2);
char* endPtr;
@@ -586,45 +615,26 @@ bool VictronBLE::hexStringToBytes(const String& hex, uint8_t* bytes, size_t len)
return false;
}
}
return true;
}
// Helper: MAC address to string
String VictronBLE::macAddressToString(BLEAddress address) {
char macStr[18];
snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x",
address.getNative()[0], address.getNative()[1],
address.getNative()[2], address.getNative()[3],
address.getNative()[4], address.getNative()[5]);
return String(macStr);
return String(address.toString().c_str());
}
// Helper: Normalize MAC address format
String VictronBLE::normalizeMAC(String mac) {
String VictronBLE::normalizeMAC(const String& mac) {
String normalized = mac;
normalized.toLowerCase();
normalized.replace("-", ":");
normalized.replace("-", "");
normalized.replace(":", "");
return normalized;
}
// Debug helpers
// Debug helper
void VictronBLE::debugPrint(const String& message) {
if (debugEnabled) {
if (debugEnabled)
Serial.println("[VictronBLE] " + message);
}
}
void VictronBLE::debugPrintHex(const char* label, const uint8_t* data, size_t len) {
if (!debugEnabled) return;
Serial.print("[VictronBLE] ");
Serial.print(label);
Serial.print(": ");
for (size_t i = 0; i < len; i++) {
if (data[i] < 0x10) Serial.print("0");
Serial.print(data[i], HEX);
Serial.print(" ");
}
Serial.println();
}

View File

@@ -1,9 +1,9 @@
/**
* VictronBLE - ESP32 library for Victron Energy BLE devices
*
*
* Based on Victron's official BLE Advertising protocol documentation
* Inspired by hoberman's examples and keshavdv's Python library
*
*
* Copyright (c) 2025 Scott Penrose
* License: MIT
*/
@@ -20,7 +20,7 @@
#include "mbedtls/aes.h"
// Victron manufacturer ID
#define VICTRON_MANUFACTURER_ID 0x02E1
static constexpr uint16_t VICTRON_MANUFACTURER_ID = 0x02E1;
// Device type IDs from Victron protocol
enum VictronDeviceType {
@@ -53,6 +53,72 @@ enum SolarChargerState {
CHARGER_EXTERNAL_CONTROL = 252
};
// Binary data structures for decoding BLE advertisements
// Must use __attribute__((packed)) to prevent compiler padding
// Manufacturer data structure (outer envelope)
struct victronManufacturerData {
uint16_t vendorID; // vendor ID
uint8_t beaconType; // Should be 0x10 (Product Advertisement) for the packets we want
uint8_t unknownData1[3]; // Unknown data
uint8_t victronRecordType; // Should be 0x01 (Solar Charger) for the packets we want
uint16_t nonceDataCounter; // Nonce
uint8_t encryptKeyMatch; // Should match pre-shared encryption key byte 0
uint8_t victronEncryptedData[21]; // (31 bytes max per BLE spec - size of previous elements)
uint8_t nullPad; // extra byte because toCharArray() adds a \0 byte.
} __attribute__((packed));
// Decrypted payload structures for each device type
// Solar Charger decrypted payload
struct victronSolarChargerPayload {
uint8_t deviceState; // Charge state (SolarChargerState enum)
uint8_t errorCode; // Error code
int16_t batteryVoltage; // Battery voltage in 10mV units
int16_t batteryCurrent; // Battery current in 10mA units (signed)
uint16_t yieldToday; // Yield today in 10Wh units
uint16_t inputPower; // PV power in 1W units
uint16_t loadCurrent; // Load current in 10mA units (0xFFFF = no load)
uint8_t reserved[2]; // Reserved bytes
} __attribute__((packed));
// Battery Monitor decrypted payload
struct victronBatteryMonitorPayload {
uint16_t remainingMins; // Time remaining in minutes
uint16_t batteryVoltage; // Battery voltage in 10mV units
uint8_t alarms; // Alarm bits
uint16_t auxData; // Aux voltage (10mV) or temperature (0.01K)
uint8_t currentLow; // Battery current bits 0-7
uint8_t currentMid; // Battery current bits 8-15
uint8_t currentHigh_consumedLow; // Current bits 16-21 (low 6 bits), consumed bits 0-1 (high 2 bits)
uint8_t consumedMid; // Consumed Ah bits 2-9
uint8_t consumedHigh; // Consumed Ah bits 10-17
uint16_t soc; // State of charge in 0.1% units (10-bit value)
uint8_t reserved[2]; // Reserved bytes
} __attribute__((packed));
// Inverter decrypted payload
struct victronInverterPayload {
uint8_t deviceState; // Device state
uint8_t errorCode; // Error code
uint16_t batteryVoltage; // Battery voltage in 10mV units
int16_t batteryCurrent; // Battery current in 10mA units (signed)
uint8_t acPowerLow; // AC Power bits 0-7
uint8_t acPowerMid; // AC Power bits 8-15
uint8_t acPowerHigh; // AC Power bits 16-23 (signed 24-bit)
uint8_t alarms; // Alarm bits
uint8_t reserved[4]; // Reserved bytes
} __attribute__((packed));
// DC-DC Converter decrypted payload
struct victronDCDCConverterPayload {
uint8_t chargeState; // Charge state
uint8_t errorCode; // Error code
uint16_t inputVoltage; // Input voltage in 10mV units
uint16_t outputVoltage; // Output voltage in 10mV units
uint16_t outputCurrent; // Output current in 10mA units
uint8_t reserved[6]; // Reserved bytes
} __attribute__((packed));
// Base structure for all device data
struct VictronDeviceData {
String deviceName;
@@ -61,8 +127,8 @@ struct VictronDeviceData {
int8_t rssi;
uint32_t lastUpdate;
bool dataValid;
VictronDeviceData() : deviceType(DEVICE_TYPE_UNKNOWN), rssi(-100),
VictronDeviceData() : deviceType(DEVICE_TYPE_UNKNOWN), rssi(-100),
lastUpdate(0), dataValid(false) {}
};
@@ -75,8 +141,8 @@ struct SolarChargerData : public VictronDeviceData {
float panelPower; // W
uint16_t yieldToday; // Wh
float loadCurrent; // A
SolarChargerData() : chargeState(CHARGER_OFF), batteryVoltage(0),
SolarChargerData() : chargeState(CHARGER_OFF), batteryVoltage(0),
batteryCurrent(0), panelVoltage(0), panelPower(0),
yieldToday(0), loadCurrent(0) {
deviceType = DEVICE_TYPE_SOLAR_CHARGER;
@@ -97,8 +163,8 @@ struct BatteryMonitorData : public VictronDeviceData {
bool alarmLowSOC;
bool alarmLowTemperature;
bool alarmHighTemperature;
BatteryMonitorData() : voltage(0), current(0), temperature(0),
BatteryMonitorData() : voltage(0), current(0), temperature(0),
auxVoltage(0), remainingMinutes(0), consumedAh(0),
soc(0), alarmLowVoltage(false), alarmHighVoltage(false),
alarmLowSOC(false), alarmLowTemperature(false),
@@ -117,7 +183,7 @@ struct InverterData : public VictronDeviceData {
bool alarmLowVoltage;
bool alarmHighTemperature;
bool alarmOverload;
InverterData() : batteryVoltage(0), batteryCurrent(0), acPower(0),
state(0), alarmHighVoltage(false), alarmLowVoltage(false),
alarmHighTemperature(false), alarmOverload(false) {
@@ -132,15 +198,16 @@ struct DCDCConverterData : public VictronDeviceData {
float outputCurrent; // A
uint8_t chargeState;
uint8_t errorCode;
DCDCConverterData() : inputVoltage(0), outputVoltage(0), outputCurrent(0),
chargeState(0), errorCode(0) {
deviceType = DEVICE_TYPE_DCDC_CONVERTER;
}
};
// Forward declaration
// Forward declarations
class VictronBLE;
class VictronBLEAdvertisedDeviceCallbacks;
// Callback interface for device data updates
class VictronDeviceCallback {
@@ -158,9 +225,9 @@ struct VictronDeviceConfig {
String macAddress;
String encryptionKey; // 32 character hex string
VictronDeviceType expectedType;
VictronDeviceConfig() : expectedType(DEVICE_TYPE_UNKNOWN) {}
VictronDeviceConfig(String n, String mac, String key, VictronDeviceType type = DEVICE_TYPE_UNKNOWN)
VictronDeviceConfig(const String& n, const String& mac, const String& key, VictronDeviceType type = DEVICE_TYPE_UNKNOWN)
: name(n), macAddress(mac), encryptionKey(key), expectedType(type) {}
};
@@ -169,86 +236,87 @@ class VictronBLE {
public:
VictronBLE();
~VictronBLE();
// Initialize BLE and start scanning
bool begin(uint32_t scanDuration = 5);
// Add a device to monitor
bool addDevice(const VictronDeviceConfig& config);
bool addDevice(String name, String macAddress, String encryptionKey,
bool addDevice(const String& name, const String& macAddress, const String& encryptionKey,
VictronDeviceType expectedType = DEVICE_TYPE_UNKNOWN);
// Remove a device
void removeDevice(String macAddress);
void removeDevice(const String& macAddress);
// Get device count
size_t getDeviceCount() const { return devices.size(); }
// Set callback for data updates
void setCallback(VictronDeviceCallback* cb) { callback = cb; }
// Process scanning (call in loop())
void loop();
// Get latest data for a device
bool getSolarChargerData(String macAddress, SolarChargerData& data);
bool getBatteryMonitorData(String macAddress, BatteryMonitorData& data);
bool getInverterData(String macAddress, InverterData& data);
bool getDCDCConverterData(String macAddress, DCDCConverterData& data);
bool getSolarChargerData(const String& macAddress, SolarChargerData& data);
bool getBatteryMonitorData(const String& macAddress, BatteryMonitorData& data);
bool getInverterData(const String& macAddress, InverterData& data);
bool getDCDCConverterData(const String& macAddress, DCDCConverterData& data);
// Get all devices of a specific type
std::vector<String> getDevicesByType(VictronDeviceType type);
// Enable/disable debug output
void setDebug(bool enable) { debugEnabled = enable; }
// Get last error message
String getLastError() const { return lastError; }
private:
friend class VictronBLEAdvertisedDeviceCallbacks;
struct DeviceInfo {
VictronDeviceConfig config;
VictronDeviceData* data;
uint8_t encryptionKeyBytes[16];
DeviceInfo() : data(nullptr) {
memset(encryptionKeyBytes, 0, 16);
}
~DeviceInfo() {
if (data) delete data;
}
DeviceInfo(const DeviceInfo&) = delete;
DeviceInfo& operator=(const DeviceInfo&) = delete;
};
std::map<String, DeviceInfo*> devices;
BLEScan* pBLEScan;
VictronBLEAdvertisedDeviceCallbacks* scanCallback;
VictronDeviceCallback* callback;
bool debugEnabled;
String lastError;
uint32_t scanDuration;
bool initialized;
// Internal methods
bool hexStringToBytes(const String& hex, uint8_t* bytes, size_t len);
bool decryptAdvertisement(const uint8_t* encrypted, size_t encLen,
bool decryptAdvertisement(const uint8_t* encrypted, size_t encLen,
const uint8_t* key, const uint8_t* iv,
uint8_t* decrypted);
bool parseAdvertisement(const uint8_t* manufacturerData, size_t len,
const String& macAddress);
void processDevice(BLEAdvertisedDevice advertisedDevice);
bool parseAdvertisement(DeviceInfo* deviceInfo, const victronManufacturerData& mfgData);
void processDevice(BLEAdvertisedDevice& advertisedDevice);
VictronDeviceData* createDeviceData(VictronDeviceType type);
bool parseSolarCharger(const uint8_t* data, size_t len, SolarChargerData& result);
bool parseBatteryMonitor(const uint8_t* data, size_t len, BatteryMonitorData& result);
bool parseInverter(const uint8_t* data, size_t len, InverterData& result);
bool parseDCDCConverter(const uint8_t* data, size_t len, DCDCConverterData& result);
void debugPrint(const String& message);
void debugPrintHex(const char* label, const uint8_t* data, size_t len);
String macAddressToString(BLEAddress address);
String normalizeMAC(String mac);
String normalizeMAC(const String& mac);
};
// BLE scan callback class
@@ -256,7 +324,7 @@ class VictronBLEAdvertisedDeviceCallbacks: public BLEAdvertisedDeviceCallbacks {
public:
VictronBLEAdvertisedDeviceCallbacks(VictronBLE* parent) : victronBLE(parent) {}
void onResult(BLEAdvertisedDevice advertisedDevice) override;
private:
VictronBLE* victronBLE;
};