Files
VictronBLE/src/VictronBLE.cpp
2025-12-29 11:09:33 +11:00

715 lines
24 KiB
C++

/**
* VictronBLE - ESP32 library for Victron Energy BLE devices
* Implementation file
*
* Copyright (c) 2025 Scott Penrose
* License: MIT
*/
#include "VictronBLE.h"
// Constructor
VictronBLE::VictronBLE()
: pBLEScan(nullptr), callback(nullptr), debugEnabled(false),
scanDuration(5), initialized(false) {
}
// Destructor
VictronBLE::~VictronBLE() {
for (auto& pair : devices) {
delete pair.second;
}
devices.clear();
if (pBLEScan) {
pBLEScan->stop();
}
}
// Initialize BLE
bool VictronBLE::begin(uint32_t scanDuration) {
if (initialized) {
debugPrint("VictronBLE already initialized");
return true;
}
this->scanDuration = scanDuration;
debugPrint("Initializing VictronBLE...");
BLEDevice::init("VictronBLE");
pBLEScan = BLEDevice::getScan();
if (!pBLEScan) {
lastError = "Failed to create BLE scanner";
return false;
}
pBLEScan->setAdvertisedDeviceCallbacks(new VictronBLEAdvertisedDeviceCallbacks(this), true);
pBLEScan->setActiveScan(false); // Passive scan - lower power
pBLEScan->setInterval(100);
pBLEScan->setWindow(99);
initialized = true;
debugPrint("VictronBLE initialized successfully");
return true;
}
// Add a device to monitor
bool VictronBLE::addDevice(const VictronDeviceConfig& config) {
if (config.macAddress.length() == 0) {
lastError = "MAC address cannot be empty";
return false;
}
if (config.encryptionKey.length() != 32) {
lastError = "Encryption key must be 32 hex characters";
return false;
}
String normalizedMAC = normalizeMAC(config.macAddress);
// Check if device already exists
if (devices.find(normalizedMAC) != devices.end()) {
debugPrint("Device " + normalizedMAC + " already exists, updating config");
delete devices[normalizedMAC];
}
DeviceInfo* info = new DeviceInfo();
info->config = config;
info->config.macAddress = normalizedMAC;
// Convert encryption key from hex string to bytes
if (!hexStringToBytes(config.encryptionKey, info->encryptionKeyBytes, 16)) {
lastError = "Invalid encryption key format";
delete info;
return false;
}
// Create appropriate data structure based on device type
info->data = createDeviceData(config.expectedType);
if (info->data) {
info->data->macAddress = normalizedMAC;
info->data->deviceName = config.name;
}
devices[normalizedMAC] = info;
debugPrint("Added device: " + config.name + " (" + normalizedMAC + ")");
return true;
}
bool VictronBLE::addDevice(String name, String macAddress, String encryptionKey,
VictronDeviceType expectedType) {
VictronDeviceConfig config(name, macAddress, encryptionKey, expectedType);
return addDevice(config);
}
// Remove a device
void VictronBLE::removeDevice(String macAddress) {
String normalizedMAC = normalizeMAC(macAddress);
auto it = devices.find(normalizedMAC);
if (it != devices.end()) {
delete it->second;
devices.erase(it);
debugPrint("Removed device: " + normalizedMAC);
}
}
// Main loop function
void VictronBLE::loop() {
if (!initialized) {
return;
}
// Start a scan
BLEScanResults scanResults = pBLEScan->start(scanDuration, false);
pBLEScan->clearResults();
}
// BLE callback implementation
void VictronBLEAdvertisedDeviceCallbacks::onResult(BLEAdvertisedDevice advertisedDevice) {
if (victronBLE) {
// Debug: Log all discovered BLE devices
if (victronBLE->debugEnabled) {
String mac = victronBLE->macAddressToString(advertisedDevice.getAddress());
String debugMsg = "BLE Device: " + mac;
debugMsg += ", RSSI: " + String(advertisedDevice.getRSSI()) + " dBm";
if (advertisedDevice.haveName()) {
debugMsg += ", Name: " + String(advertisedDevice.getName().c_str());
}
if (advertisedDevice.haveManufacturerData()) {
std::string mfgData = advertisedDevice.getManufacturerData();
if (mfgData.length() >= 2) {
uint16_t mfgId = (uint8_t)mfgData[1] << 8 | (uint8_t)mfgData[0];
debugMsg += ", Mfg ID: 0x" + String(mfgId, HEX);
if (mfgId == VICTRON_MANUFACTURER_ID) {
debugMsg += " (Victron)";
}
}
}
victronBLE->debugPrint(debugMsg);
}
victronBLE->processDevice(advertisedDevice);
}
}
// Process advertised device
void VictronBLE::processDevice(BLEAdvertisedDevice advertisedDevice) {
String mac = macAddressToString(advertisedDevice.getAddress());
String normalizedMAC = normalizeMAC(mac);
// Check if this is one of our configured devices
auto it = devices.find(normalizedMAC);
if (it == devices.end()) {
// XXX Check if the device is a Victron device
// This needs lots of improvemet and only do in debug
if (advertisedDevice.haveManufacturerData()) {
std::string mfgData = advertisedDevice.getManufacturerData();
if (mfgData.length() >= 2) {
uint16_t mfgId = (uint8_t)mfgData[1] << 8 | (uint8_t)mfgData[0];
if (mfgId == VICTRON_MANUFACTURER_ID) {
debugPrint("Found unmonitored Victron Device: " + normalizeMAC(mac));
// DeviceInfo* deviceInfo = new DeviceInfo(mac, advertisedDevice.getName());
// devices.insert({normalizedMAC, deviceInfo});
// XXX What type of Victron device is it?
// Check if it's a Victron Energy device
/*
if (advertisedDevice.haveServiceData()) {
std::string serviceData = advertisedDevice.getServiceData();
if (serviceData.length() >= 2) {
uint16_t serviceId = (uint8_t)serviceData[1] << 8 | (uint8_t)serviceData[0];
if (serviceId == VICTRON_ENERGY_SERVICE_ID) {
debugPrint("Found Victron Energy Device: " + mac);
}
}
}
*/
}
}
}
return; // Not a device we're monitoring
}
DeviceInfo* deviceInfo = it->second;
// Check if device has manufacturer data
if (!advertisedDevice.haveManufacturerData()) {
return;
}
std::string mfgData = advertisedDevice.getManufacturerData();
if (mfgData.length() < 2) {
return;
}
// XXX Use struct like code in Sh3dNg
// Check if it's Victron (manufacturer ID 0x02E1)
uint16_t mfgId = (uint8_t)mfgData[1] << 8 | (uint8_t)mfgData[0];
if (mfgId != VICTRON_MANUFACTURER_ID) {
return;
}
debugPrint("Processing data from: " + deviceInfo->config.name);
// Parse the advertisement
if (parseAdvertisement((const uint8_t*)mfgData.data(), mfgData.length(), normalizedMAC)) {
// Update RSSI
if (deviceInfo->data) {
deviceInfo->data->rssi = advertisedDevice.getRSSI();
deviceInfo->data->lastUpdate = millis();
}
}
}
// Parse advertisement data
bool VictronBLE::parseAdvertisement(const uint8_t* manufacturerData, size_t len,
const String& macAddress) {
auto it = devices.find(macAddress);
if (it == devices.end()) {
debugPrint("parseAdvertisement: Device not found");
return false;
}
DeviceInfo* deviceInfo = it->second;
// Verify minimum size for victronManufacturerData struct
if (len < sizeof(victronManufacturerData)) {
debugPrint("Manufacturer data too short: " + String(len) + " bytes");
return false;
}
// Cast manufacturer data to struct for easy access
const victronManufacturerData* vicData = (const victronManufacturerData*)manufacturerData;
if (debugEnabled) {
debugPrint("Vendor ID: 0x" + String(vicData->vendorID, HEX));
debugPrint("Beacon Type: 0x" + String(vicData->beaconType, HEX));
debugPrint("Model ID: 0x" + String(vicData->modelID, HEX));
debugPrint("Readout Type: 0x" + String(vicData->readoutType, HEX));
debugPrint("Record Type: 0x" + String(vicData->victronRecordType, HEX));
debugPrint("Nonce: 0x" + String(vicData->nonceDataCounter, HEX));
}
// Get device type from record type field
uint8_t deviceType = vicData->victronRecordType;
// Build IV (initialization vector) from nonce
// IV is 16 bytes: nonce (2 bytes little-endian) + zeros (14 bytes)
uint8_t iv[16] = {0};
iv[0] = vicData->nonceDataCounter & 0xFF; // Low byte
iv[1] = (vicData->nonceDataCounter >> 8) & 0xFF; // High byte
// Remaining bytes stay zero
// Get pointer to encrypted data
const uint8_t* encryptedData = vicData->victronEncryptedData;
size_t encryptedLen = sizeof(vicData->victronEncryptedData);
if (debugEnabled) {
debugPrintHex("IV", iv, 16);
debugPrintHex("Encrypted data", encryptedData, encryptedLen);
}
// Decrypt the data
uint8_t decrypted[32]; // Max expected size
if (!decryptAdvertisement(encryptedData, encryptedLen,
deviceInfo->encryptionKeyBytes, iv, decrypted)) {
lastError = "Decryption failed";
return false;
}
if (debugEnabled) {
debugPrintHex("Decrypted data", decrypted, encryptedLen);
}
// Parse based on device type
bool parseOk = false;
switch (deviceType) {
case DEVICE_TYPE_SOLAR_CHARGER:
if (deviceInfo->data && deviceInfo->data->deviceType == DEVICE_TYPE_SOLAR_CHARGER) {
parseOk = parseSolarCharger(decrypted, encryptedLen,
*(SolarChargerData*)deviceInfo->data);
}
break;
case DEVICE_TYPE_BATTERY_MONITOR:
if (deviceInfo->data && deviceInfo->data->deviceType == DEVICE_TYPE_BATTERY_MONITOR) {
parseOk = parseBatteryMonitor(decrypted, encryptedLen,
*(BatteryMonitorData*)deviceInfo->data);
}
break;
case DEVICE_TYPE_INVERTER:
case DEVICE_TYPE_INVERTER_RS:
case DEVICE_TYPE_MULTI_RS:
case DEVICE_TYPE_VE_BUS:
if (deviceInfo->data && deviceInfo->data->deviceType == DEVICE_TYPE_INVERTER) {
parseOk = parseInverter(decrypted, encryptedLen,
*(InverterData*)deviceInfo->data);
}
break;
case DEVICE_TYPE_DCDC_CONVERTER:
if (deviceInfo->data && deviceInfo->data->deviceType == DEVICE_TYPE_DCDC_CONVERTER) {
parseOk = parseDCDCConverter(decrypted, encryptedLen,
*(DCDCConverterData*)deviceInfo->data);
}
break;
default:
debugPrint("Unknown device type: 0x" + String(deviceType, HEX));
return false;
}
if (parseOk && deviceInfo->data) {
deviceInfo->data->dataValid = true;
// Call appropriate callback
if (callback) {
switch (deviceType) {
case DEVICE_TYPE_SOLAR_CHARGER:
callback->onSolarChargerData(*(SolarChargerData*)deviceInfo->data);
break;
case DEVICE_TYPE_BATTERY_MONITOR:
callback->onBatteryMonitorData(*(BatteryMonitorData*)deviceInfo->data);
break;
case DEVICE_TYPE_INVERTER:
case DEVICE_TYPE_INVERTER_RS:
case DEVICE_TYPE_MULTI_RS:
case DEVICE_TYPE_VE_BUS:
callback->onInverterData(*(InverterData*)deviceInfo->data);
break;
case DEVICE_TYPE_DCDC_CONVERTER:
callback->onDCDCConverterData(*(DCDCConverterData*)deviceInfo->data);
break;
}
}
}
return parseOk;
}
// Decrypt advertisement using AES-128-CTR
bool VictronBLE::decryptAdvertisement(const uint8_t* encrypted, size_t encLen,
const uint8_t* key, const uint8_t* iv,
uint8_t* decrypted) {
mbedtls_aes_context aes;
mbedtls_aes_init(&aes);
// Set encryption key
int ret = mbedtls_aes_setkey_enc(&aes, key, 128);
if (ret != 0) {
mbedtls_aes_free(&aes);
return false;
}
// AES-CTR decryption
size_t nc_off = 0;
uint8_t nonce_counter[16];
uint8_t stream_block[16];
memcpy(nonce_counter, iv, 16);
memset(stream_block, 0, 16);
ret = mbedtls_aes_crypt_ctr(&aes, encLen, &nc_off, nonce_counter,
stream_block, encrypted, decrypted);
mbedtls_aes_free(&aes);
return (ret == 0);
}
// Parse Solar Charger data
bool VictronBLE::parseSolarCharger(const uint8_t* data, size_t len, SolarChargerData& result) {
if (len < sizeof(victronSolarChargerPayload)) {
debugPrint("Solar charger data too short: " + String(len) + " bytes");
return false;
}
// Cast decrypted data to struct for easy access
const victronSolarChargerPayload* payload = (const victronSolarChargerPayload*)data;
// Parse charge state
result.chargeState = (SolarChargerState)payload->deviceState;
// Parse battery voltage (10 mV units -> volts)
result.batteryVoltage = payload->batteryVoltage * 0.01f;
// Parse battery current (10 mA units, signed -> amps)
result.batteryCurrent = payload->batteryCurrent * 0.01f;
// Parse yield today (10 Wh units -> Wh)
result.yieldToday = payload->yieldToday * 10;
// Parse PV power (1 W units)
result.panelPower = payload->inputPower;
// Parse load current (10 mA units -> amps, 0xFFFF = no load)
if (payload->loadCurrent != 0xFFFF) {
result.loadCurrent = payload->loadCurrent * 0.01f;
} else {
result.loadCurrent = 0;
}
// Calculate PV voltage from power and current (if current > 0)
if (result.batteryCurrent > 0.1f) {
result.panelVoltage = result.panelPower / result.batteryCurrent;
} else {
result.panelVoltage = 0;
}
debugPrint("Solar Charger: " + String(result.batteryVoltage, 2) + "V, " +
String(result.batteryCurrent, 2) + "A, " +
String(result.panelPower) + "W, State: " + String(result.chargeState));
return true;
}
// Parse Battery Monitor data
bool VictronBLE::parseBatteryMonitor(const uint8_t* data, size_t len, BatteryMonitorData& result) {
if (len < sizeof(victronBatteryMonitorPayload)) {
debugPrint("Battery monitor data too short: " + String(len) + " bytes");
return false;
}
// Cast decrypted data to struct for easy access
const victronBatteryMonitorPayload* payload = (const victronBatteryMonitorPayload*)data;
// Parse remaining time (1 minute units)
result.remainingMinutes = payload->remainingMins;
// Parse battery voltage (10 mV units -> volts)
result.voltage = payload->batteryVoltage * 0.01f;
// Parse alarm bits
result.alarmLowVoltage = (payload->alarms & 0x01) != 0;
result.alarmHighVoltage = (payload->alarms & 0x02) != 0;
result.alarmLowSOC = (payload->alarms & 0x04) != 0;
result.alarmLowTemperature = (payload->alarms & 0x10) != 0;
result.alarmHighTemperature = (payload->alarms & 0x20) != 0;
// Parse aux data: voltage (10 mV units) or temperature (0.01K units)
if (payload->auxData < 3000) { // If < 30V, it's voltage
result.auxVoltage = payload->auxData * 0.01f;
result.temperature = 0;
} else { // Otherwise temperature in 0.01 Kelvin
result.temperature = (payload->auxData * 0.01f) - 273.15f;
result.auxVoltage = 0;
}
// Parse battery current (22-bit signed, 1 mA units)
// Bits 0-7: currentLow, Bits 8-15: currentMid, Bits 16-21: low 6 bits of currentHigh_consumedLow
int32_t current = payload->currentLow |
(payload->currentMid << 8) |
((payload->currentHigh_consumedLow & 0x3F) << 16);
// Sign extend from 22 bits to 32 bits
if (current & 0x200000) {
current |= 0xFFC00000;
}
result.current = current * 0.001f; // Convert mA to A
// Parse consumed Ah (18-bit signed, 10 mAh units)
// Bits 0-1: high 2 bits of currentHigh_consumedLow, Bits 2-9: consumedMid, Bits 10-17: consumedHigh
int32_t consumedAh = ((payload->currentHigh_consumedLow & 0xC0) >> 6) |
(payload->consumedMid << 2) |
(payload->consumedHigh << 10);
// Sign extend from 18 bits to 32 bits
if (consumedAh & 0x20000) {
consumedAh |= 0xFFFC0000;
}
result.consumedAh = consumedAh * 0.01f; // Convert 10mAh to Ah
// Parse SOC (10-bit value, 10 = 1.0%)
result.soc = (payload->soc & 0x3FF) * 0.1f;
debugPrint("Battery Monitor: " + String(result.voltage, 2) + "V, " +
String(result.current, 2) + "A, SOC: " + String(result.soc, 1) + "%");
return true;
}
// Parse Inverter data
bool VictronBLE::parseInverter(const uint8_t* data, size_t len, InverterData& result) {
if (len < sizeof(victronInverterPayload)) {
debugPrint("Inverter data too short: " + String(len) + " bytes");
return false;
}
// Cast decrypted data to struct for easy access
const victronInverterPayload* payload = (const victronInverterPayload*)data;
// Parse device state
result.state = payload->deviceState;
// Parse battery voltage (10 mV units -> volts)
result.batteryVoltage = payload->batteryVoltage * 0.01f;
// Parse battery current (10 mA units, signed -> amps)
result.batteryCurrent = payload->batteryCurrent * 0.01f;
// Parse AC Power (signed 24-bit, 1 W units)
int32_t acPower = payload->acPowerLow |
(payload->acPowerMid << 8) |
(payload->acPowerHigh << 16);
// Sign extend from 24 bits to 32 bits
if (acPower & 0x800000) {
acPower |= 0xFF000000;
}
result.acPower = acPower;
// Parse alarm bits
result.alarmLowVoltage = (payload->alarms & 0x01) != 0;
result.alarmHighVoltage = (payload->alarms & 0x02) != 0;
result.alarmHighTemperature = (payload->alarms & 0x04) != 0;
result.alarmOverload = (payload->alarms & 0x08) != 0;
debugPrint("Inverter: " + String(result.batteryVoltage, 2) + "V, " +
String(result.acPower) + "W, State: " + String(result.state));
return true;
}
// Parse DC-DC Converter data
bool VictronBLE::parseDCDCConverter(const uint8_t* data, size_t len, DCDCConverterData& result) {
if (len < sizeof(victronDCDCConverterPayload)) {
debugPrint("DC-DC converter data too short: " + String(len) + " bytes");
return false;
}
// Cast decrypted data to struct for easy access
const victronDCDCConverterPayload* payload = (const victronDCDCConverterPayload*)data;
// Parse charge state
result.chargeState = payload->chargeState;
// Parse error code
result.errorCode = payload->errorCode;
// Parse input voltage (10 mV units -> volts)
result.inputVoltage = payload->inputVoltage * 0.01f;
// Parse output voltage (10 mV units -> volts)
result.outputVoltage = payload->outputVoltage * 0.01f;
// Parse output current (10 mA units -> amps)
result.outputCurrent = payload->outputCurrent * 0.01f;
debugPrint("DC-DC Converter: In=" + String(result.inputVoltage, 2) + "V, Out=" +
String(result.outputVoltage, 2) + "V, " + String(result.outputCurrent, 2) + "A");
return true;
}
// Get data methods
bool VictronBLE::getSolarChargerData(String macAddress, SolarChargerData& data) {
String normalizedMAC = normalizeMAC(macAddress);
auto it = devices.find(normalizedMAC);
if (it != devices.end() && it->second->data &&
it->second->data->deviceType == DEVICE_TYPE_SOLAR_CHARGER) {
data = *(SolarChargerData*)it->second->data;
return data.dataValid;
}
return false;
}
bool VictronBLE::getBatteryMonitorData(String macAddress, BatteryMonitorData& data) {
String normalizedMAC = normalizeMAC(macAddress);
auto it = devices.find(normalizedMAC);
if (it != devices.end() && it->second->data &&
it->second->data->deviceType == DEVICE_TYPE_BATTERY_MONITOR) {
data = *(BatteryMonitorData*)it->second->data;
return data.dataValid;
}
return false;
}
bool VictronBLE::getInverterData(String macAddress, InverterData& data) {
String normalizedMAC = normalizeMAC(macAddress);
auto it = devices.find(normalizedMAC);
if (it != devices.end() && it->second->data &&
it->second->data->deviceType == DEVICE_TYPE_INVERTER) {
data = *(InverterData*)it->second->data;
return data.dataValid;
}
return false;
}
bool VictronBLE::getDCDCConverterData(String macAddress, DCDCConverterData& data) {
String normalizedMAC = normalizeMAC(macAddress);
auto it = devices.find(normalizedMAC);
if (it != devices.end() && it->second->data &&
it->second->data->deviceType == DEVICE_TYPE_DCDC_CONVERTER) {
data = *(DCDCConverterData*)it->second->data;
return data.dataValid;
}
return false;
}
// Get devices by type
std::vector<String> VictronBLE::getDevicesByType(VictronDeviceType type) {
std::vector<String> result;
for (const auto& pair : devices) {
if (pair.second->data && pair.second->data->deviceType == type) {
result.push_back(pair.first);
}
}
return result;
}
// Helper: Create device data structure
VictronDeviceData* VictronBLE::createDeviceData(VictronDeviceType type) {
switch (type) {
case DEVICE_TYPE_SOLAR_CHARGER:
return new SolarChargerData();
case DEVICE_TYPE_BATTERY_MONITOR:
return new BatteryMonitorData();
case DEVICE_TYPE_INVERTER:
case DEVICE_TYPE_INVERTER_RS:
case DEVICE_TYPE_MULTI_RS:
case DEVICE_TYPE_VE_BUS:
return new InverterData();
case DEVICE_TYPE_DCDC_CONVERTER:
return new DCDCConverterData();
default:
return new VictronDeviceData();
}
}
// Helper: Convert hex string to bytes
bool VictronBLE::hexStringToBytes(const String& hex, uint8_t* bytes, size_t len) {
if (hex.length() != len * 2) {
return false;
}
for (size_t i = 0; i < len; i++) {
String byteStr = hex.substring(i * 2, i * 2 + 2);
char* endPtr;
bytes[i] = strtoul(byteStr.c_str(), &endPtr, 16);
if (*endPtr != '\0') {
return false;
}
}
return true;
}
// Helper: MAC address to string
String VictronBLE::macAddressToString(BLEAddress address) {
char macStr[18];
snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x",
address.getNative()[0], address.getNative()[1],
address.getNative()[2], address.getNative()[3],
address.getNative()[4], address.getNative()[5]);
return String(macStr);
}
// Helper: Normalize MAC address format
String VictronBLE::normalizeMAC(String mac) {
String normalized = mac;
normalized.toLowerCase();
// XXX - is this right, was - to : but not consistent location of pairs or not
normalized.replace("-", "");
normalized.replace(":", "");
return normalized;
}
// Debug helpers
void VictronBLE::debugPrint(const String& message) {
if (debugEnabled) {
Serial.println("[VictronBLE] " + message);
}
}
// XXX Can't we use debugPrintf instead for hex struct etc?
void VictronBLE::debugPrintHex(const char* label, const uint8_t* data, size_t len) {
if (!debugEnabled) return;
Serial.print("[VictronBLE] ");
Serial.print(label);
Serial.print(": ");
for (size_t i = 0; i < len; i++) {
if (data[i] < 0x10) Serial.print("0");
Serial.print(data[i], HEX);
Serial.print(" ");
}
Serial.println();
}